, Volume 832, Issue 1, pp 297–315 | Cite as

Recent sympatric speciation involving habitat-associated nuptial colour polymorphism in a crater lake cichlid

  • Melissa Lemoine
  • Marta Barluenga
  • Kay Lucek
  • Salome Mwaiko
  • Marcel Haesler
  • Lauren J. Chapman
  • Colin A. Chapman
  • Ole SeehausenEmail author


Even though the idea that modes of speciation other than allopatric speciation are possible in nature is now widespread, compelling examples of ecological speciation in sympatry remain rare. We studied an undescribed radiation of haplochromine cichlids in a young crater lake in western Uganda, and in the small river that is nearby but has currently no known surface connection to the lake. We describe two different modes of speciation that occurred in this cichlid lineage within the past 1,500–10,000 years. Not constrained by gene flow, allopatric divergence between river and lake cichlids affects many different morphological traits as well as nuptial colouration—muted in the river, but intensified and polymorphic in lake cichlids—and neutral genetic differentiation. More surprisingly, we demonstrate a case for sympatric speciation within the small lake that is associated with dramatic differences in male breeding colouration (yellow with bright red-chest versus bright blue) and subtle differences in microhabitat, feeding regime and morphology. Reproductive isolation by assortative mating is suggested by significant differentiation between yellow and blue males in neutral markers of gene flow despite complete sympatry. We hypothesize speciation is mediated by divergent selection on sexual signalling between microhabitats.


Crater lakes Lake Victoria region Sexual selection Microsatellites Cichlidae 



We thank Jackson Efitre and the dedicated field assistants of the Kibale Fish Project for help with fieldwork, the students of the Tropical Biology Association Kibale Course of 2003 for help with stomach content analyses, and Rachel Tongue for help with morphometric distances. The genetic lab work was supported by Swiss National Science Foundation Grants 3100A0-118293/1 and 31003A_163338 to OS. Field work conducted by LJC was supported by Funding for this research was provided from the National Science Foundation and the Wildlife Conservation Society. Permission to conduct research in Uganda was acquired from the Uganda National Council for Science and Technology.

Supplementary material

10750_2018_3746_MOESM1_ESM.docx (3.1 mb)
Supplementary material 1 (DOCX 3180 kb)


  1. Allender, C. J., O. Seehausen, M. E. Knight, G. F. Turner & N. Maclean, 2003. Divergent selection during speciation of Lake Malawi cichlid fishes inferred from parallel radiations in nuptial coloration. Proceedings of the National Academy of Sciences of the United States of America 100: 14074–14079.CrossRefGoogle Scholar
  2. Barel, C. D. N., M. van Oijen, F. Witte & E. Witte-Maas, 1977. An introduction to taxonomy and morphology of haplochromine Cichlidae from Lake Victoria. Netherlands Journal of Zoology 27: 333–389.Google Scholar
  3. Barluenga, M., K. N. Stölting, W. Salzburger, M. Muschick & A. Meyer, 2006. Sympatric speciation in Nicaraguan crater lake cichlid fish. Nature 439: 719–723.CrossRefGoogle Scholar
  4. Bolnick, D. I. & B. M. Fitzpatrick, 2007. Sympatric speciation: models and empirical evidence. Annual Review of Ecology Evolution and Systematics 38: 459–487.CrossRefGoogle Scholar
  5. Boughman, J. W., 2001. Divergent sexual selection enhances reproductive isolation in sticklebacks. Nature 411: 944–948.CrossRefGoogle Scholar
  6. Boughman, J. W., 2002. How sensory drive can promote speciation. Trends in Ecology & Evolution 17: 571–577.CrossRefGoogle Scholar
  7. Butlin, R. K., J. Galindo & J. W. Grahame, 2008. Sympatric, parapatric or allopatric: the most important way to classify speciation? Philosophical Transactions of the Royal Society of London Series B, Biological Sciences 363: 2997–3007.CrossRefGoogle Scholar
  8. Carleton, K. L. & T. D. Kocher, 2001. Cone opsin genes of african cichlid fishes: tuning spectral sensitivity by differential gene expression. Molecular Biology and Evolution 18: 1540–1550.CrossRefGoogle Scholar
  9. Carleton, K. L., J. W. L. Parry, J. K. Bowmaker, D. M. Hunt & O. Seehausen, 2005. Colour vision and speciation in Lake Victoria cichlids of the genus Pundamilia. Molecular Ecology 14: 4341–4353.CrossRefGoogle Scholar
  10. Clement, M., D. Posada & K. A. Crandall, 2000. TCS: a computer program to estimate gene genealogies. Molecular Ecology 9: 1657–1659.CrossRefGoogle Scholar
  11. Coyne, J. A. & H. A. Orr, 2004. Speciation. Sinauer Associates, Sunderland.Google Scholar
  12. Crow, K. D., H. Munehara & G. Bernardi, 2010. Sympatric speciation in a genus of marine reef fishes. Molecular Ecology 19: 2089–2105.CrossRefGoogle Scholar
  13. Dijkstra, P. D., O. Seehausen, M. E. R. Pierotti & T. G. G. Groothuis, 2007. Male-male competition and speciation: aggression bias towards differently coloured rivals varies between stages of speciation in a Lake Victoria cichlid species complex. Journal of Evolutionary Biology 20: 496–502.CrossRefGoogle Scholar
  14. Dijkstra, P. D., J. Lindstroem, N. B. Metcalfe, C. K. Hemelrijk, M. Brendel, O. Seehausen & T. G. G. Groothuis, 2010. Frequency-dependent social dominance in a color polymorphic cichlid fish. Evolution 64: 2797–2807.PubMedGoogle Scholar
  15. Elmer, K. R., T. K. Lehtonen, A. F. Kautt, C. Harrod & A. Meyer, 2010. Rapid sympatric ecological differentiation of crater lake cichlid fishes within historic times. BMC Biology 8: 60.CrossRefGoogle Scholar
  16. Endler, J. A. & A. L. Basolo, 1998. Sensory ecology, receiver biases and sexual selection. Trends in Ecology & Evolution 13: 415–420.CrossRefGoogle Scholar
  17. Excoffier, L. & H. E. L. Lischer, 2010. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources 10: 564–567.CrossRefGoogle Scholar
  18. Feder, J. L., S. M. Flaxman, S. P. Egan, A. A. Comeault & P. Nosil, 2013. Geographic mode of speciation and genomic divergence. Annual Review of Ecology Evolution and Systematics 44: 73–97.CrossRefGoogle Scholar
  19. Foll, M. & O. Gaggiotti, 2008. A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: a Bayesian perspective. Genetics 180: 977–993.CrossRefGoogle Scholar
  20. Futuyma, D. J. & G. C. Mayer, 1980. Non-allopatric speciation in animals. Systematic Biology 29: 254–271.CrossRefGoogle Scholar
  21. Goldschmidt, T., F. Witte & J. de Visser, 1990. Ecological segregation in zooplanktivorous Haplochromine species (Pisces: Cichlidae) from Lake Victoria. Oikos 58: 343–355.CrossRefGoogle Scholar
  22. Goudet, J., 2002. FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3).
  23. Hall, T., 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41: 95–98.Google Scholar
  24. Hyslop, E. J., 1980. Stomach contents analysis—a review of methods and their application. Journal of Fish Biology 17: 411–429.CrossRefGoogle Scholar
  25. Kautt, A. F., G. Machado-Schiaffino, J. Torres-Dowdall & A. Meyer, 2016a. Incipient sympatric speciation in Midas cichlid fish from the youngest and one of the smallest crater lakes in Nicaragua due to differential use of the benthic and limnetic habitats? Ecology and Evolution 6: 5342–5357.CrossRefGoogle Scholar
  26. Kautt, A. F., G. Machado-Schiaffino & A. Meyer, 2016b. Multispecies outcomes of sympatric speciation after admixture with the source population in two radiations of Nicaraguan crater lake Cichlids. Plos Genetics 12: e1006157.CrossRefGoogle Scholar
  27. Kisel, Y. & T. G. Barraclough, 2010. Speciation has a spatial scale that depends on levels of gene flow. American Naturalist 175: 316–334.CrossRefGoogle Scholar
  28. Kocher, T. D., 2004. Adaptive evolution and explosive speciation: the cichlid fish model. Nature Reviews Genetics 5: 288–298.CrossRefGoogle Scholar
  29. Kocher, T. D., J. A. Conroy, K. R. McKaye, J. R. Stauffer & S. F. Lockwood, 1995. Evolution of NADH dehydrogenase subunit 2 in east African cichlid fish. Molecular Phylogenetics and Evolution 4: 420–432.CrossRefGoogle Scholar
  30. Kocher, T. D., W. K. Thomas, A. Meyer, S. V. Edwards, S. Pääbo, F. X. Villablanca & A. C. Wilson, 1989. Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. Proceedings of the National Academy of Sciences of the United States of America 86: 6196–6200.CrossRefGoogle Scholar
  31. Maan, M. E. & O. Seehausen, 2011. Ecology, sexual selection and speciation. Ecology Letters 14: 591–602.CrossRefGoogle Scholar
  32. Machado-Schiaffino, G., A. F. Kautt, H. Kusche & A. Meyer, 2015. Parallel evolution in Ugandan crater lakes: repeated evolution of limnetic body shapes in haplochromine cichlid fish. BMC Evolutionary Biology 15: 9.CrossRefGoogle Scholar
  33. Magalhaes, I. S. & O. Seehausen, 2010. Genetics of male nuptial colour divergence between sympatric sister species of a Lake Victoria cichlid fish. Journal of Evolutionary Biology 23: 914–924.CrossRefGoogle Scholar
  34. Magalhaes, I. S., S. Mwaiko & O. Seehausen, 2010. Sympatric colour polymorphisms associated with nonrandom gene flow in cichlid fish of Lake Victoria. Molecular Ecology 19: 3285–3300.CrossRefGoogle Scholar
  35. Martin, C. H., J. S. Cutler, J. P. Friel, C. D. Touokong, G. Coop & P. C. Wainwright, 2015. Complex histories of repeated gene flow in Cameroon crater lake cichlids cast doubt on one of the clearest examples of sympatric speciation. Evolution 69: 1406–1422.CrossRefGoogle Scholar
  36. Malinsky, M., R. J. Challis, A. M. Tyers, S. Schiffels, Y. Terai, B. P. Ngatunga, E. A. Miska, R. Durbin, M. J. Genner & G. F. Turner, 2015. Genomic islands of speciation separate cichlid ecomorphs in an East African crater lake. Science 350: 1493–1498.CrossRefGoogle Scholar
  37. Meier, J. I., D. A. Marques, S. Mwaiko, C. E. Wagner, L. Excoffier & O. Seehausen, 2017a. Ancient hybridization fuels rapid cichlid fish adaptive radiations. Nature Communications 8: 14363.CrossRefGoogle Scholar
  38. Meier, J. I., V. C. Sousa, D. A. Marques, O. M. Selz, C. E. Wagner, L. Excoffier & O. Seehausen, 2017b. Demographic modelling with whole-genome data reveals parallel origin of similar Pundamilia cichlid species after hybridization. Molecular Ecology 26: 123–141.CrossRefGoogle Scholar
  39. Mills, K., 2009. Ugandan crater lakes: limnology, palaeolimnology and palaeoenvironmental history. PhD Thesis, Loughborough University, UK.Google Scholar
  40. Moser, F. N., J. C. van Rijssel, S. Mwaiko, J. I. Meier, B. Ngatunga & O. Seehausen, 2018. The onset of ecological diversification 50 years after colonization of a crater lake by haplochromine cichlid fishes. Proceedings of the Royal Society B-Biological Sciences 285: 20180171.CrossRefGoogle Scholar
  41. Muschick, M., A. Indermaur & W. Salzburger, 2012. Convergent evolution within an adaptive radiation of cichlid fishes. Current Biology 22: 2362–2368.CrossRefGoogle Scholar
  42. Nixon, P. H. & G. Hornung, 1973. The carbonatite lavas and tuffs near Fort Portal, Western Uganda. Overseas Geological and Mineral Research 41: 168–179.Google Scholar
  43. Nosil, P., 2008. Speciation with gene flow could be common. Molecular Ecology 17: 2103–2106.CrossRefGoogle Scholar
  44. Nosil, P., 2012. Ecological Speciation. Oxford University Press, Oxford.CrossRefGoogle Scholar
  45. Rice, W. R., 1989. Analyzing tables of statistical tests. Evolution 43: 223–225.CrossRefGoogle Scholar
  46. Russell, J. M., D. Verschuren & H. Eggermont, 2007. Spatial complexity of “Little Ice Age” climate in East Africa: sedimentary records from two crater lake basins in western Uganda. The Holocene 17: 183–193.CrossRefGoogle Scholar
  47. Samonte, I. E., Y. Satta, A. Sato, H. Tichy, N. Takahata & J. Klein, 2007. Gene flow between species of Lake Victoria Haplochromine fishes. Molecular Biology and Evolution 24: 2069–2080.CrossRefGoogle Scholar
  48. Santini, F., M. P. Miglietta & A. Faucci, 2012. Speciation: where are we now? Evolutionary Biology 39: 141–147.CrossRefGoogle Scholar
  49. Sato, A., N. Takezaki, H. Tichy, F. Figueroa, W. E. Mayer & J. Klein, 2003. Origin and speciation of haplochromine fishes in East African crater lakes investigated by the analysis of their mtDNA, Mhc Genes, and SINEs. Molecular Biology and Evolution 20: 1448–1462.CrossRefGoogle Scholar
  50. Schliewen, U. K., D. Tautz & S. Pääbo, 1994. Sympatric speciation suggested by monophyly of crater lake cichlids. Nature 368: 629–632.CrossRefGoogle Scholar
  51. Schliewen, U., K. Rassmann, M. Markmann, J. Markert, T. Kocher & D. Tautz, 2001. Genetic and ecological divergence of a monophyletic cichlid species pair under fully sympatric conditions in Lake Ejagham, Cameroon. Molecular Ecology 10: 1471–1488.CrossRefGoogle Scholar
  52. Seehausen, O., 2006. African cichlid fish: a model system in adaptive radiation research. Proceedings of the Royal Society B-Biological Sciences 273: 1987–1998.CrossRefGoogle Scholar
  53. Seehausen, O. & D. Schluter, 2004. Male-male competition and nuptial-colour displacement as a diversifying force in Lake Victoria cichlid fishes. Proceedings of the Royal Society B-Biological Sciences 271: 1345–1353.CrossRefGoogle Scholar
  54. Seehausen, O. & J. J. M. van Alphen, 1999. Can sympatric speciation by disruptive sexual selection explain rapid evolution of cichlid diversity in Lake Victoria? Ecology Letters 2: 262–271.CrossRefGoogle Scholar
  55. Seehausen, O., J. J. M. Van Alpen & F. Witte, 1999. Can ancient colour polymorphisms explain why some cichlid lineages speciate rapidly under disruptive sexual selection? Belgian Journal of Zoology 129: 43–60.Google Scholar
  56. Seehausen, O., F. Witte, J. J. M. van Alphen & N. Bouton, 1998. Direct mate choice maintains diversity among sympatric cichlids in Lake Victoria. Journal of Fish Biology 53: 37–55.CrossRefGoogle Scholar
  57. Seehausen, O., R. K. Butlin, I. Keller, C. E. Wagner, J. W. Boughman, P. A. Hohenlohe, C. L. Peichel, G.-P. Saetre, C. Bank, Å. Brännström, A. Brelsford, C. S. Clarkson, F. Eroukhmanoff, J. L. Feder, M. C. Fischer, A. D. Foote, P. Franchini, C. D. Jiggins, F. C. Jones, A. K. Lindholm, K. Lucek, M. E. Maan, D. A. Marques, S. H. Martin, B. Matthews, J. I. Meier, M. Möst, M. W. Nachman, E. Nonaka, D. J. Rennison, J. Schwarzer, E. T. Watson, A. M. Westram & A. Widmer, 2014. Genomics and the origin of species. Nature Reviews Genetics 15: 176–192.CrossRefGoogle Scholar
  58. Seehausen, O., Y. Terai, I. S. Magalhaes, K. L. Carleton, H. D. J. Mrosso, R. Miyagi, I. van der Sluijs, M. V. Schneider, M. E. Maan, H. Tachida, H. Imai & N. Okada, 2008. Speciation through sensory drive in cichlid fish. Nature 455: 620–626.CrossRefGoogle Scholar
  59. Selz, O. M., R. Thommen, M. E. R. Pierotti, J. M. Anaya-Rojas & O. Seehausen, 2016. Differences in male coloration are predicted by divergent sexual selection between populations of a cichlid fish. Proceedings of the Royal Society B-Biological Sciences. Scholar
  60. Sugawara, T., Y. Terai & N. Okada, 2002. Natural selection of the rhodopsin gene during the adaptive radiation of East African Great Lakes Cichlid fishes. Molecular Biology and Evolution 19: 1807–1811.CrossRefGoogle Scholar
  61. Terai, Y., O. Seehausen, T. Sasaki, K. Takahashi, S. Mizoiri, T. Sugawara, T. Sato, M. Watanabe, N. Konijnendijk, H. D. J. Mrosso, H. Tachida, H. Imai, Y. Shichida & N. Okada, 2006. Divergent selection on opsins drives incipient speciation in Lake Victoria cichlids. PLoS Biology 4: e433.CrossRefGoogle Scholar
  62. Terai, Y., W. E. Mayer, J. Klein, H. Tichy & N. Okada, 2002. The effect of selection on a long wavelength-sensitive (LWS) opsin gene of Lake Victoria cichlid fishes. Proceedings of the National Academy of Sciences of the United States of America 99: 15501–15506.CrossRefGoogle Scholar
  63. van Doorn, G. S., U. Dieckmann & F. J. Weissing, 2004. Sympatric speciation by sexual selection: a critical reevaluation. American Naturalist 163: 709–725.CrossRefGoogle Scholar
  64. van Doorn, G. S., P. Edelaar & F. J. Weissing, 2009. On the origin of species by natural and sexual selection. Science 326: 1704–1707.CrossRefGoogle Scholar
  65. van Rijssel, J. C., F. N. Moser, D. Frei & O. Seehausen, 2018. Prevalence of disruptive selection predicts extent of species differentiation in Lake Victoria cichlids. Proceedings of the Royal Society B-Biological Sciences 285: 20172630.CrossRefGoogle Scholar
  66. van Oosterhout, C., W. F. Hutchinson, D. Wills & P. Shipley, 2004. MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Molecular Ecology Notes 4: 535–538.CrossRefGoogle Scholar
  67. Verheyen, E., W. Salzburger, J. Snoeks & A. Meyer, 2003. Origin of the superflock of Cichlid fishes from Lake Victoria, East Africa. Science 300: 325–329.CrossRefGoogle Scholar
  68. Vinogradov, V. I., A. A. Krasnov, V. N. Kuleshov & L. D. Sulerzhitskiy, 1978. 13C/12C, 18O/16O, and 14C concentrations in the carbonatites of the Kalyango Volcano (East Africa). Izvestiya Akademii Nauk, Seriya Geologicheskaya 6: 33–41.Google Scholar
  69. Wagner, C. E., L. J. Harmon & O. Seehausen, 2012. Ecological opportunity and sexual selection together predict adaptive radiation. Nature 487: 366–370.CrossRefGoogle Scholar
  70. Wagner, C. E., L. J. Harmon & O. Seehausen, 2014. Cichlid species-area relationships are shaped by adaptive radiations that scale with area. Ecology Letters 17: 583–592.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Institute of Ecology and EvolutionUniversity of BernBernSwitzerland
  2. 2.EAWAG Center of Ecology, Evolution and BiochemistryKastanienbaumSwitzerland
  3. 3.Museo Nacional de Ciencias Naturales, CSICMadridSpain
  4. 4.Department of Environmental SciencesUniversity of BaselBaselSwitzerland
  5. 5.Department of BiologyMcGill UniversityMontréalCanada
  6. 6.Department of Anthropology and McGill School of EnvironmentMcGill UniversityMontréalCanada

Personalised recommendations