Acidification, stress, and detrital processing: implications for ecosystem function in headwater streams

Abstract

Environmental influences like acidification promote stress at the ecosystem level that manifests as reduction in metabolic and biogeochemical efficiency. Headwater streams along a chronic acidity gradient were assessed to explore how stress alters microbial abundance and activity and their influence on ecosystem structure and function. Streams draining deciduous forests were investigated during autumn when channels were filled by leaf litter. Whole-system measures of respiration were coupled to estimates of fungal biomass in leaf biofilms to generate an ecosystem-level measure of metabolic efficiency (qCO2E, g CO2–C g C−1 d−1). Stable isotope releases of nitrate nitrogen (15N–NO3) were performed to address nitrate uptake (\({\text{U}}_{{{\text{NO}}_{ 3} }}\)) across streams. Fungal stocks decreased across five streams as pH declined (6.98–5.34). Whole-system respiration decreased fivefold with increasing acidity, while qCO2E did not respond consistently to acidification, but was correlated with stream temperature. Across streams, concentrations of nitrogen (N) were low and \({\text{U}}_{{{\text{NO}}_{ 3} }}\) related to nutrient availability and not to stream acidity. Results illustrate that acidification alters ecosystem processes through influences on microbial abundance and metabolic activity, while scarce N availability and low \({\text{U}}_{{{\text{NO}}_{ 3} }}\) characterized biogeochemical behavior during autumnal periods of maximal detrital stocks.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Bååth, E. & T. H. Anderson, 2003. Comparison of soil fungal/bacterial ratios in a pH gradient using physiological and PLFA-based techniques. Soil Biology and Biochemistry 35: 955–963.

    Article  Google Scholar 

  2. Baudoin, J. M., F. Guérold, V. Felten, E. Chauvet, P. Wagner & P. Rousselle, 2008. Elevated aluminum concentration in acidified headwater streams lowers aquatic hyphomycete diversity and impairs leaf-litter breakdown. Microbial Ecology 56: 260–269.

    CAS  Article  Google Scholar 

  3. Bergfur, J. & N. Friberg, 2012. Trade-offs between fungal and bacterial respiration along gradients in temperature, nutrients and substrata: Experiments with stream derived microbial communities. Fungal ecology 5: 46–52.

    Article  Google Scholar 

  4. Blagodatskaya, E. V. & T.-H. Anderson, 1998. Interactive effects of pH and substrate quality on the fungal-to-bacterial ratio and qCO2 of microbial communities in forest soils. Soil Biology and Biochemistry 30: 1269–1274.

    CAS  Article  Google Scholar 

  5. Bott, T. L., J. D. Newbold & D. B. Arscott, 2006. Ecosystem metabolism in Piedmont streams: Reach geomorphology modulates the influence of riparian vegetation. Ecosystems 9: 398–421.

    Article  Google Scholar 

  6. Brown, J. H., J. F. Gillooly, A. P. Allen, V. M. Savage & G. B. West, 2004. Toward a metabolic theory of ecology. Ecology 85: 1771–1789.

    Article  Google Scholar 

  7. Charcosset, J.-Y. & E. Chauvet, 2001. Effect of culture conditions on ergosterol as an indicator of biomass in aquatic hyphomycetes. Applied and Environmental Microbiology 67: 2051–2055.

    CAS  Article  Google Scholar 

  8. Cheever, B. M. & J. R. Webster, 2014. Effects of consumers and nitrogen availability on heterotrophic microbial activity during leaf decomposition in headwater streams. Freshwater Biology 59: 1768–1780.

    CAS  Article  Google Scholar 

  9. Cheever, B. M., E. B. Kratzer & J. R. Webster, 2012. Immobilization and mineralization of N and P by heterotrophic microbes during leaf decomposition. Freshwater Science 31: 133–147.

    Article  Google Scholar 

  10. Clivot, H., M. Danger, C. Pagnout, P. F. Wagner, P. Rousselle, P. Poupin & F. Guérold, 2013. Impaired leaf litter processing in acidified streams. Microbial Ecology 65: 1–11.

    CAS  Article  Google Scholar 

  11. Cornut, J., H. Clivot, E. Chauvet, A. Elger, C. Pagnout & F. Guérold, 2012. Effect of acidification on leaf litter decomposition in benthic and hyporheic zones of woodland streams. Water Research 46: 6430–6444.

    CAS  Article  Google Scholar 

  12. Crain, C. M., K. Kroeker & B. S. Halpern, 2008. Interactive and cumulative effects of multiple human stressors in marine systems. Ecology Letters 11: 1304–1315.

    Article  Google Scholar 

  13. Cross, W. F., J. M. Hood, J. P. Benstead, A. D. Huryn & D. Nelson, 2015. Interactions between temperature and nutrients across levels of ecological organization. Global Change Biology 21: 1025–1040.

    Article  Google Scholar 

  14. Dangles, O. & E. Chauvet, 2003. Effects of stream acidification on fungal biomass in decaying beech leaves and leaf palatability. Water Research 37: 533–538.

    CAS  Article  Google Scholar 

  15. Dangles, O. & F. Guerold, 1998. A comparative study of beech leaf breakdown, energetic content, and associated fauna in acidic and non-acidic streams. Archiv für Hydrobiologie 144: 25–39.

    Article  Google Scholar 

  16. Dangles, O., M. O. Gessner, F. Guerold & E. Chauvet, 2004a. Impacts of stream acidification on litter breakdown: implications for assessing ecosystem functioning. Journal of Applied Ecology 41: 365–378.

    CAS  Article  Google Scholar 

  17. Dangles, O., B. Malmqvist & H. Laudon, 2004b. Naturally acid freshwater ecosystems are diverse and functional: evidence from boreal streams. Oikos 104: 149–155.

    Article  Google Scholar 

  18. Driscoll, C. T., G. B. Lawrence, A. J. Bulger, T. J. Butler, C. S. Cronan, C. Eagar, K. F. Lambert, G. E. Likens, J. L. Stoddard & K. C. Weathers, 2001. Acidic deposition in the northeastern United States: sources and inputs, ecosystem effects, and management strategies: the effects of acidic deposition in the northeastern United States include the acidification of soil and water, which stresses terrestrial and aquatic biota. BioScience 51: 180–198.

    Article  Google Scholar 

  19. Ely, D. T., D. Von Schiller & H. M. Valett, 2010. Stream acidification increases nitrogen uptake by leaf biofilms: implications at the ecosystem scale. Freshwater Biology 55: 1337–1348.

    CAS  Article  Google Scholar 

  20. Enquist, B. J., E. P. Economo, T. E. Huxman, A. P. Allen, D. D. Ignace & J. F. Gillooly, 2003. Scaling metabolism from organisms to ecosystems. Nature 423: 639–642.

    CAS  Article  Google Scholar 

  21. Evans, C., J. Cullen, C. Alewell, J. Kopácek, A. Marchetto, F. Moldan, A. Prechtel, M. Rogora, J. Veselý & R. Wright, 2001. Recovery from acidification in European surface waters. Hydrology and Earth System Sciences Discussions 5: 283–298.

    Article  Google Scholar 

  22. Ferreira, V. & E. Chauvet, 2011. Synergistic effects of water temperature and dissolved nutrients on litter decomposition and associated fungi. Global Change Biology 17: 551–564.

    Article  Google Scholar 

  23. Ferreira, V. & F. Guerold, 2017. Leaf litter decomposition as a bioassessment tool of acidification effects in streams: evidence from a field study and meta-analysis. Ecological Indicators 79: 382–390.

    CAS  Article  Google Scholar 

  24. Findlay, S., J. Tank, S. Dye, H. M. Valett, P. J. Mulholland, W. H. McDowell, S. L. Johnson, S. K. Hamilton, J. Edmonds, W. K. Dodds & W. B. Bowden, 2002. A cross-system comparison of bacterial and fungal biomass in detritus pools of headwater streams. Microbial Ecology 43: 55–66.

    CAS  Article  Google Scholar 

  25. Fowler, D., R. Smith, J. Muller, G. Hayman & K. Vincent, 2005. Changes in the atmospheric deposition of acidifying compounds in the UK between 1986 and 2001. Environmental Pollution 137: 15–25.

    CAS  Article  Google Scholar 

  26. Gessner, M. O. & E. Chauvet, 1993. Ergosterol-to-biomass conversion factors for aquatic hyphomycetes. Applied and Environmental Microbiology 59: 502–507.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Gessner, M. O. & E. Chauvet, 1994. Importance of stream microfungi in controlling breakdown rates of leaf litter. Ecology 75: 1807–1817.

    Article  Google Scholar 

  28. Greaver, T. L., T. J. Sullivan, J. D. Herrick, M. C. Barber, J. S. Baron, B. J. Cosby, M. E. Deerhake, R. L. Dennis, J.-J. B. Dubois & C. L. Goodale, 2012. Ecological effects of nitrogen and sulfur air pollution in the US: what do we know? Frontiers in Ecology and the Environment 10: 365–372.

    Article  Google Scholar 

  29. Griffith, M. & S. Perry, 1994. Fungal biomass and leaf litter processing in streams of different water chemistry. Hydrobiologia 294: 51–61.

    CAS  Article  Google Scholar 

  30. Gulis, V. & K. Suberkropp, 2003. Effect of inorganic nutrients on relative contributions of fungi and bacteria to carbon flow from submerged decomposing leaf litter. Microbial Ecology 45: 11–19.

    CAS  Article  Google Scholar 

  31. Helliwell, R. C., R. F. Wright, L. A. Jackson-Blake, R. C. Ferrier, J. Aherne, B. J. Cosby, C. D. Evans, M. Forsius, J. Hruska & A. Jenkins, 2014. Assessing recovery from acidification of European surface waters in the year 2010: evaluation of projections made with the MAGIC model in 1995. Environmental Science and Technology 48: 13280–13288.

    CAS  Article  Google Scholar 

  32. Herlihy, A., P. Kaufmann, M. Church, P. Wigington, J. Webb & M. Sale, 1993. The effects of acidic deposition on streams in the Appalachian Mountain and piedmont region of the mid-Atlantic United States. Water Resources Research 29: 2687–2703.

    CAS  Article  Google Scholar 

  33. Hildrew, A., C. R. Townsend, J. Francis & K. Finch, 1984. Cellulolytic decomposition in streams of contrasting pH and its relationship with invertebrate community structure. Freshwater Biology 14: 323–328.

    Article  Google Scholar 

  34. Hogsden, K. L. & J. S. Harding, 2011. Consequences of acid mine drainage for the structure and function of benthic stream communities: a review. Freshwater Science 31: 108–120.

    Article  Google Scholar 

  35. Huryn, A. D., J. P. Benstead & S. M. Parker, 2014. Seasonal changes in light availability modify the temperature dependence of ecosystem metabolism in an arctic stream. Ecology 95: 2826–2839.

    Article  Google Scholar 

  36. Jenkins, G. B., G. Woodward & A. G. Hildrew, 2013. Long-term amelioration of acidity accelerates decomposition in headwater streams. Global Change Biology 19: 1100–1106.

    Article  Google Scholar 

  37. Kahl, J. S., S. A. Norton, T. A. Haines, E. A. Rochette, R. H. Heath & S. C. Nodvin, 1992. Mechanisms of episodic acidification in low-order streams in Maine, USA. Environmental Pollution 78: 37–44.

    CAS  Article  Google Scholar 

  38. Kopáček, J., J. Hejzlar, J. Kaňa, S. A. Norton & E. Stuchlík, 2015. Effects of acidic deposition on in-lake phosphorus availability: a lesson from lakes recovering from acidification. Environmental Science & Technology 49: 2895–2903.

    Article  Google Scholar 

  39. Layer, K., J. O. Riede, A. G. Hildrew & G. Woodward, 2010. Food web structure and stability in 20 streams across a wide pH gradient. Advances in Ecological Research 42: 265–299.

    Article  Google Scholar 

  40. Layer, K., A. G. Hildrew & G. Woodward, 2013. Grazing and detritivory in 20 stream food webs across a broad pH gradient. Oecologia 171: 459–471.

    Article  Google Scholar 

  41. Lovett, G. M., T. H. Tear, D. C. Evers, S. E. Findlay, B. J. Cosby, J. K. Dunscomb, C. T. Driscoll & K. C. Weathers, 2009. Effects of air pollution on ecosystems and biological diversity in the eastern United States. Annals of the New York Academy of Sciences 1162: 99–135.

    CAS  Article  Google Scholar 

  42. Lynch, J. A., V. C. Bowersox & J. W. Grimm, 2000. Changes in sulfate deposition in eastern USA following implementation of phase I of title IV of the clean air act amendments of 1990. Atmospheric Environment 34: 1665–1680.

    CAS  Article  Google Scholar 

  43. Marzolf, E. R., P. J. Mulholland & A. D. Steinman, 1994. Improvements to the diurnal upstream-downstream dissolved oxygen change technique for determining whole-stream metabolism in small streams. Canadian Journal of Fisheries and Aquatic Sciences 51: 1591–1599.

    Article  Google Scholar 

  44. Matthaei, C. D., J. J. Piggott & C. R. Townsend, 2010. Multiple stressors in agricultural streams: interactions among sediment addition, nutrient enrichment and water abstraction. Journal of Applied Ecology 47: 639–649.

    Article  Google Scholar 

  45. Methvin, B. R. & K. Suberkropp, 2003. Annual production of leaf-decaying fungi in 2 streams. Journal of the North American Benthological Society 22: 554–564.

    Article  Google Scholar 

  46. Mulholland, P. M., J. D. Newbold, J. W. Elwood, L. A. Ferren & J. R. Webster, 1985. Phosphorus spiralling in a woodland stream: seasonal variations. Ecology 66: 1012–1023.

    Article  Google Scholar 

  47. Mulholland, P. J., A. V. Palumbo, J. W. Elwood & A. D. Rosemond, 1987. Effects of acidification on leaf decomposition in streams. Journal of the North American Benthological Society 6: 147–158.

    Article  Google Scholar 

  48. Mulholland, P. J., C. T. Driscoll, J. W. Elwood, M. P. Osgood, A. V. Palumbo, A. D. Rosemond, M. E. Smith & C. Schofield, 1992. Relationships between stream acidity and bacteria, macroinvertebrates, and fish: a comparison of north temperate and south temperate mountain streams, USA. Hydrobiologia 239: 7–24.

    CAS  Article  Google Scholar 

  49. Mulholland, P. J., A. M. Helton, G. C. Poole, R. O. Hall, S. K. Hamilton, B. J. Peterson, J. L. Tank, L. R. Ashkenas, L. W. Cooper, C. N. Dahm, W. K. Dodds, S. E. G. Findlay, S. V. Gregory, N. B. Grimm, S. L. Johnson, W. H. McDowell, J. L. Meyer, H. M. Valett, J. R. Webster, C. P. Arango, J. J. Beaulieu, M. J. Bernot, A. J. Burgin, C. L. Crenshaw, L. T. Johnson, B. R. Niederlehner, J. M. O’Brien, J. D. Potter, R. W. Sheibley, D. J. Sobota & S. M. Thomas, 2008. Stream denitrification across biomes and its response to anthropogenic nitrate loading. Nature 452: 202–205.

    CAS  Article  Google Scholar 

  50. Munday, P. L., N. E. Crawley & G. E. Nilsson, 2009. Interacting effects of elevated temperature and ocean acidification on the aerobic performance of coral reef fishes. Marine Ecology Progress Series 388: 235–242.

    CAS  Article  Google Scholar 

  51. Niyogi, D. K., W. M. J. Lewis & D. M. McKnight, 2001. Litter breakdown in mountain streams affected by mine drainage: biotic mediation of abiotic controls. Ecological Applications 11: 506–516.

    Article  Google Scholar 

  52. Niyogi, D. K., D. M. McKnight & W. M. Lewis Jr., 2002. Fungal communities and biomass in mountain streams affected by mine drainage. Archiv für Hydrobiologie 155: 255–271.

    Article  Google Scholar 

  53. Odum, E. P., 1985. Trends expected in stressed ecosystems. Bioscience 35: 419–422.

    Article  Google Scholar 

  54. Ormerod, S., M. Dobson, A. Hildrew & C. Townsend, 2010. Multiple stressors in freshwater ecosystems. Freshwater Biology 55: 1–4.

    Article  Google Scholar 

  55. Pascoal, C. & F. Cássio, 2004. Contribution of fungi and bacteria to leaf litter decomposition in a polluted river. Applied and Environmental Microbiology 70: 5266–5273.

    CAS  Article  Google Scholar 

  56. Pastor, A., Z. G. Compson, P. Dijkstra, J. L. Riera, E. Marti, F. Sabater, B. A. Hungate & J. C. Marks, 2014. Stream carbon and nitrogen supplements during leaf litter decomposition: contrasting patterns for two foundation species. Oecologia 176: 1111–1121.

    Article  Google Scholar 

  57. Piggott, J. J., C. R. Townsend & C. D. Matthaei, 2015a. Climate warming and agricultural stressors interact to determine stream macroinvertebrate community dynamics. Global Change Biology 21: 1887–1906.

    Article  Google Scholar 

  58. Piggott, J. J., C. R. Townsend & C. D. Matthaei, 2015b. Reconceptualizing synergism and antagonism among multiple stressors. Ecology and Evolution 5: 1538–1540.

    Article  Google Scholar 

  59. Roberts, B. J., P. J. Mulholland & W. R. Hill, 2007. Multiple scales of temporal variability in ecosystem metabolism rates: results from 2 years of continuous monitoring in a forested headwater stream. Ecosystems 10: 558–606.

    Article  Google Scholar 

  60. Rousk, J., P. C. Brookes & E. Bååth, 2009. Contrasting soil pH effects on fungal and bacterial growth suggest functional redundancy in carbon mineralization. Applied and Environmental Microbiology 75: 1589–1596.

    CAS  Article  Google Scholar 

  61. Rousk, J., P. C. Brookes & E. Bååth, 2010a. Investigating the mechanisms for the opposing pH relationships of fungal and bacterial growth in soil. Soil Biology and Biochemistry 42: 926–934.

    CAS  Article  Google Scholar 

  62. Rousk, J., E. Bååth, P. C. Brookes, C. L. Lauber, C. Lozupone, J. G. Caporaso, R. Knight & N. Fierer, 2010b. Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J 4: 1340–1351.

    Article  Google Scholar 

  63. Schimel, J. P., T. C. Balser & M. Wallenstein, 2007. Microbial stress-response physiology and its implications for ecosystem function. Ecology 88: 1386–1394.

    Article  Google Scholar 

  64. Sigman, D. M., M. A. Altabet, R. Michener, D. C. McCorkle, B. Fry & R. M. Holmes, 1997. Natural abundance-level measurement of nitrogen isotopic composition of oceanic nitrate and adaptation of the ammonium diffusion method. Marine Chemistry 57: 227–242.

    CAS  Article  Google Scholar 

  65. Simon, K. S., M. A. Simon & E. F. Benfield, 2009. Variation in ecosystem function in Appalachian streams along an acidity gradient. Ecological Applications 19: 1147–1160.

    CAS  Article  Google Scholar 

  66. Skjelkvåle, B., J. Stoddard, D. Jeffries, K. Tørseth, T. Høgåsen, J. Bowman, J. Mannio, D. Monteith, R. Mosello & M. Rogora, 2005. Regional scale evidence for improvements in surface water chemistry 1990–2001. Environmental Pollution 137: 165–176.

    Article  Google Scholar 

  67. Smith, S. V. & J. T. Hollibaugh, 1997. Annual cycle and interannual variability of ecosystem metabolism in a temperate climate embayment. Ecological Monographs 67: 509–533.

    Article  Google Scholar 

  68. Sterner, R. W. & J. J. Elser, 2002. Ecological Stoichiometry: the biology of elements from molecules to the biosphere. Princeton University Press, Princeton.

    Google Scholar 

  69. Suberkropp, K., V. Gulis, A. D. Rosemond & J. P. Benstead, 2010. Ecosystem and physiological scales of microbial responses to nutrients in a detritus-based stream: results of a 5-year continuous enrichment. Limnology and Oceanography 55: 149–160.

    Article  Google Scholar 

  70. Tank, J. L., J. R. Webster, E. F. Benfield & R. L. Sinsabaugh, 1998. Effects of leaf litter exclusion on microbial enzyme activity associted with wood biofilms in streams. Journal of the North American Benthological Society 17: 95–103.

    Article  Google Scholar 

  71. Townsend, C. R., S. S. Uhlmann & C. D. Matthaei, 2008. Individual and combined responses of stream ecosystems to multiple stressors. Journal of Applied Ecology 45: 1810–1819.

    Article  Google Scholar 

  72. Valett, H. M., S. A. Thomas, P. J. Mulholland, J. R. Webster, C. N. Dahm, C. S. Fellows, C. L. Crenshaw & C. G. Peterson, 2008. Endogenous and exogenous control of nitrate uptake in headwater streams. Ecology 89: 3515–3527.

    CAS  Article  Google Scholar 

  73. Wardle, D. A. & A. Ghani, 1995. A critique of the microbial metabolic quotient (qCO2) as a bioindicator of disturbance and ecosystem development. Soil Biology and Biochemistry 27: 1601–1610.

    CAS  Article  Google Scholar 

  74. Webster, J. R. & H. M. Valett, 2007. Solute dynamics. In Hauer, F. R. & G. A. Lamberti (eds), Methods in stream ecology: field and laboratory exercises, 2nd ed. Academic Press, Burlington, MA: 169–186.

    Google Scholar 

  75. Wright, R. F., T. Larssen, L. Camarero, B. J. Cosby, R. C. Ferrier, R. Helliwell, M. Forsius, A. Jenkins, J. Kopáěek, V. Majer, F. Moldan, M. Posch, M. Rogora & W. Schöpp, 2005. Recovery of acidified European surface waters. Environmental Science and Technology 39: 64A–72A.

    CAS  Article  Google Scholar 

  76. Yvon-Durocher, G., J. I. Jones, M. Trimmer, G. Woodward & J. M. Montoya, 2010. Warming alters the metabolic balance of ecosystems. Philosophical Transactions of the Royal Society B: Biological Sciences 365: 2117–2126.

    Article  Google Scholar 

Download references

Acknowledgements

We thank JR Webster, E.F. Benfield, B.R. Niederlhener, D. Von Schiller, and the students of the Virginia Tech Stream Team for conceptual and operational support. HM Valett also thanks Marc Peipoch for comments on an earlier draft of the manuscript. This research was supported by National Science Foundation (NSF) awards DEB080836 to DT Ely and HM Valett, DEB0841809 to KS Simon and HM Valett, NSF EPSCoR Track-1 NSF-IIA-1443108, and the Montana Institute on Ecosystems. The datasets generated and/or analyzed during the current study are available through DataONE (https://www.dataone.org/).

Author information

Affiliations

Authors

Corresponding author

Correspondence to H. Maurice Valett.

Additional information

Handling editor: Verónica Ferreira

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 361 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Valett, H.M., Ely, D.T. Acidification, stress, and detrital processing: implications for ecosystem function in headwater streams. Hydrobiologia 826, 233–246 (2019). https://doi.org/10.1007/s10750-018-3735-4

Download citation

Keywords

  • Metabolic efficiency
  • N uptake
  • Stress
  • Acidification
  • Streams
  • Fungi