, Volume 831, Issue 1, pp 23–31 | Cite as

Compounding effects of co-occurring disturbances on populations of a harmful bloom-forming mixotrophic protist

  • Sierra E. Cagle
  • Daniel L. RoelkeEmail author
  • Rika M. W. Muhl


Anthropogenic activity is leading to increasing frequency and magnitude of disturbance in freshwater systems throughout the world. In turn, disturbance events are more likely to co-occur, compounding effects. Here we present a case study in which we investigated how the effects of co-occurring disturbances might interact to influence the abundance of a harmful algal bloom-forming species, Prymnesium parvum. The disturbances applied here included increased salinity, community composition change via the removal of large zooplankton, and elevated propagule pressure of P. parvum. We also examined the role that historical exposure to one of the disturbances played in influencing the effect of the co-occurring disturbances. We show that these types of disturbances can lead to synergistic or compounded effects, here influencing the abundance of a harmful algal species, and that historical exposure to a disturbance can influence this effect. These findings highlight the important role of increased and co-occurring disturbance in aquatic ecosystems and the role it may play in the formation of harmful algae blooms as the frequency of these occurrences increases.


Prymnesium parvum Co-occurring disturbance Salinification Grazing Propagule pressure 



The Texas Water Resource Institute Mills Scholarship, The J.H. Benedict, Sr. Memorial Graduate Student Scholarship and the William Roach Scholarship, all administered through Texas A&M University are acknowledged for tuition support.


  1. Acosta, F., R. M. Zamor, F. Z. Najar, B. A. Roe & K. D. Hambright, 2015. Dynamics of an experimental microbial invasion. Proceedings of the National Academy of Sciences 112: 11594–11599.CrossRefGoogle Scholar
  2. Baker, J. W., J. P. Grover, B. W. Brooks, F. Ureña-Boeck, D. L. Roelke, R. Errera & R. L. Kiesling, 2007. Growth and toxicity of Prymnesium parvum (Haptophyta) as a function of salinity, light, and temperature. Journal of phycology 43: 219–227.CrossRefGoogle Scholar
  3. Baker, J. W., J. P. Grover, R. Ramachandrannair, C. Black, T. W. Valenti, B. W. Brooks & D. L. Roelke, 2009. Growth at the edge of the niche: an experimental study of the harmful alga Prymnesium parvum. Limnology and Oceanography 54: 1679–1687.CrossRefGoogle Scholar
  4. Blossom, H. E., N. G. Andersen, S. A. Rasmussen & P. J. Hansen, 2014. Stability of the intra-and extracellular toxins of Prymnesium parvum using a microalgal bioassay. Harmful Algae 32: 11–21.CrossRefGoogle Scholar
  5. Brooks, B. W., S. V. James, T. W. Valenti Jr., F. Ureña-Boeck, C. Serrano, J. P. Berninger, L. Schwierzke, L. D. Mydlarz, J. P. Grover & D. L. Roelke, 2010. Comparative toxicity of Prymnesium parvum in inland waters. JAWRA Journal of the American Water Resources Association 46: 45–62.CrossRefGoogle Scholar
  6. Carter, N., 1937. New or interesting algae from brackish water. Arch Protistenk 90: 1–68.Google Scholar
  7. Errera, R. M., D. L. Roelke, R. L. Kiesling, B. W. Brooks, J. P. Grover, L. Schwierzke, F. Ureña-Boeck, J. W. Baker & J. L. Pinckney, 2008. Effect of imbalanced nutrients and immigration on Prymnesium parvum community dominance and toxicity: results from in-lake microcosm experiments. Aquatic Microbial Ecology 52: 33–44.CrossRefGoogle Scholar
  8. Flöder, S., S. Jaschinski, G. Wells & C. W. Burns, 2010. Dominance and compensatory growth in phytoplankton communities under salinity stress. Journal of Experimental Marine Biology and Ecology 395: 223–231.CrossRefGoogle Scholar
  9. Glasby, T. M. & A. Underwood, 1996. Sampling to differentiate between pulse and press perturbations. Environmental Monitoring and Assessment 42: 241–252.CrossRefGoogle Scholar
  10. Guillard, R. R. & J. H. Ryther, 1962. Studies of marine planktonic diatoms: I. Cyclotella nana Hustedt, and Detonula confervacea (Cleve) Gran. Canadian Journal of Microbiology 8: 229.CrossRefGoogle Scholar
  11. Hambright, K. D., J. E. Beyer, J. D. Easton, R. M. Zamor, A .C. Easton, T. C. Hallidayschult. 2015. The niche of an invasive marine microbe in a subtropical freshwater impoundment. The ISME Journal 9: 256–264.CrossRefGoogle Scholar
  12. Hill, D. R. A. & R. Wetherbee, 1989. A reappraisal of the genus Rhodomonas (Cryptophyceae). Phycologia 28: 143–158.CrossRefGoogle Scholar
  13. Patiño, R., D. Dawson & M. M. VanLandeghem, 2014. Retrospective analysis of associations between water quality and toxic blooms of golden alga (Prymnesium parvum) in Texas reservoirs: implications for understanding dispersal mechanisms and impacts of climate change. Harmful Algae 33: 1–11.CrossRefGoogle Scholar
  14. Reynolds, C. S., 2006. The ecology of phytoplankton. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  15. Roelke, D. L., A. Barkoh, B. W. Brooks, J. P. Grover, K. D. Hambright, J. W. LaClaire, P. D. Moeller & R. Patino, 2016. A chronicle of a killer alga in the west: ecology, assessment, and management of Prymnesium parvum blooms. Hydrobiologia 764: 29–50.CrossRefGoogle Scholar
  16. Roelke, D. L., B. W. Brooks, J. P. Grover, G. M. Gable, L. Schwierzke-Wade, N. C. Hewitt. 2012. Anticipated human population and climate change effects on algal blooms of a toxic haptophyte in the south-central USA. Canadian Journal of Fisheries and Aquatic Sciences 69: 1389–1404.CrossRefGoogle Scholar
  17. Roelke, D. L., J. P. Grover, B. W. Brooks, J. Glass, D. Buzan, G. M. Southard, L. Fries, G. M. Gable, L. Schwierzke-Wade & M. Byrd, 2010a. A decade of fish-killing Prymnesium parvum blooms in Texas: roles of inflow and salinity. Journal of Plankton Research 33: 243–253.CrossRefGoogle Scholar
  18. Roelke, D. L., L. Schwierzke, B. W. Brooks, J. P. Grover, R. M. Errera, T. W. Valenti & J. L. Pinckney, 2010b. Factors influencing Prymnesium parvum population dynamics during bloom initiation: results from in-lake mesocosm experiments. JAWRA Journal of the American Water Resources Association 46: 76–91.CrossRefGoogle Scholar
  19. Shade, A., H. Peter, S. D. Allison, D. L. Baho, M. Berga, H. Bürgmann, D. H. Huber, S. Langenheder, J. T. Lennon & J. B. Martiny, 2012. Fundamentals of microbial community resistance and resilience. Frontiers in Microbiology 3: 417.CrossRefGoogle Scholar
  20. Skovgaard, A. & P. J. Hansen, 2003. Food uptake in the harmful alga Prymnesium parvum mediated by excreted toxins. Limnology and Oceanography 48: 1161–1166.CrossRefGoogle Scholar
  21. Sommer, U., Z. M. Gliwicz, W. Lampert & A. Duncan, 1986. The PEG-model of seasonal succession of planktonic events in fresh waters. Archiv fur Hydrobiologie 106: 433–471.Google Scholar
  22. Tillmann, U., 2003. Kill and eat your predator: a winning strategy of the planktonic flagellate Prymnesium parvum. Aquatic Microbial Ecology 32: 73–84.CrossRefGoogle Scholar
  23. Utermöhl, H., 1958. Zur vervollkommnung der quantitativen phytoplankton-methodik: Mit 1 Tabelle und 15 abbildungen im Text und auf 1 Tafel. Internationale Vereinigung für Theoretische und Angewandte Limnologie 9: 1–38.Google Scholar
  24. Wurbs, R. A., 1991. Natural salt pollution in the Brazos River Basin. Paper presented at the Hydraulic Engineering.Google Scholar
  25. Wurbs, R. A., 2002. Natural salt pollution control in the southwest. Journal (American Water Works Association) 94: 58–67.CrossRefGoogle Scholar
  26. Yariv, J. & S. Hestrin, 1961. Toxicity of the extracellular phase of Prymnesium parvum cultures. Microbiology 24: 165–175.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Wildlife and Fisheries SciencesTexas A&M UniversityCollege StationUSA
  2. 2.Department of OceanographyTexas A&M UniversityCollege StationUSA

Personalised recommendations