Skip to main content
Log in

Effects of stream velocity and phosphorus concentrations on alkaline phosphatase activity and carbon:phosphorus ratios in periphyton

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

We studied several streams spanning a steep dissolved phosphorus (PO4–P) gradient to test the hypothesis that faster stream velocity would reduce alkaline phosphatase activity (APA) and carbon:phosphorus (C:P) of benthic periphyton because higher velocities should increase the supply rate of dissolved phosphorus at the community–water interface. We tested the hypothesis that the differences in APA and C:P between fast and slow velocity locations within a stream reach would decline as stream PO4–P concentrations increased, and, therefore, velocity effects should be the greatest at low levels of PO4–P. APA declined in response to both the increased water velocity and PO4–P, but the effect of velocity on APA was negligible at the highest levels of PO4–P. Further, we found a strong, negative relationship between periphyton C:P and PO4–P levels as hypothesized, but did not detect significant relationship between C:P and velocity after accounting for the effects of PO4–P. The lack of an effect of velocity on C:P is probably due to the higher levels of APA in low-velocity, low PO4–P reaches, as the higher APA rates reflect an alternative pathway for acquiring sufficient PO4–P to sustain periphytic growth and metabolism. These results have important implications for stream ecosystem function because of the increasing frequency of extreme weather events associated with the climate change, particularly droughts that reduce or eliminate perennial stream flow, and further illustrate the important effects of stream flow on biogeochemical processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • American Public Health Association (APHA), 2005. Standard Methods for the Examination of Water and Wastewater. American Public Health Association, Washington, D.C.

    Google Scholar 

  • Arnosti, C., C. Bell, D. L. Moorhead, R. L. Sinsabaugh, M. Stromberger, M. Wallenstein & M. Weintraub, 2013. Extracellular enzymes in terrestrial, freshwater, and marine environments: system variability and common needs. Biogeochemistry 117: 5–21.

    Article  Google Scholar 

  • Asaeda, T. & D. H. Son, 2001. A model of the development of a periphyton community: resource and flow dynamics. Ecological Modeling 137: 61–75.

    Article  CAS  Google Scholar 

  • Battin, T. J., L. A. Kaplan, J. D. Newbold, X. Cheng & C. Hansen, 2003. Effects of current velocity on the nascent architecture of stream microbial biofilms. Applied and Environmental Microbiology 69: 5443–5452.

    Article  CAS  Google Scholar 

  • Biggs, B. J. F. & M. E. Close, 1989. Periphyton biomass dynamics in gravel bed rivers: the relative effects of flows and nutrients. Freshwater Biology 22: 209–231.

    Article  CAS  Google Scholar 

  • Biggs, B. J. F. & C. W. Hickey, 1994. Periphyton responses to a hydraulic gradient in a regulated river, New Zealand. Freshwater Biology 22: 209–231.

    Article  Google Scholar 

  • Biggs, B. J. F. & C. Kilroy, 2000. Stream Periphyton Monitoring Manual. NIWA, Christchurch.

    Google Scholar 

  • Biggs, B. J. F. & S. Stokseth, 1996. Hydraulic habitat suitability for periphyton in rivers. Regulated Rivers: Research and Management 12: 251–261.

    Article  Google Scholar 

  • Biggs, B. J. F., D. G. Goring & V. I. Nikora, 1998. Subsidy and stress responses of stream periphyton to gradients in water velocity as a function of community growth form. Journal of Phycology 34: 598–607.

    Article  Google Scholar 

  • Borchardt, M. A., 1996. Nutrients. In Stevenson, R. J., M. L. Bothwell & R. L. Lowe (eds), Aquatic Ecology. Academic Press, San Diego: 183–227.

    Google Scholar 

  • Bothwell, M. L., 1985. Phosphorus limitation of lotic periphyton growth rates: an intersite comparison using continuous-flow troughs (Thompson River system, British Columbia). Limnology and Oceanography 30: 527–542.

    Article  Google Scholar 

  • Chambers, P. A., J. M. Culp, N. E. Glozier, K. J. Cash, F. J. Wrona & L. Noton, 2006. Northern rivers ecosystem initiative: nutrients and dissolved oxygen – issues and impacts. Environmental Monitoring and Assessment 113: 117–141.

    Article  CAS  Google Scholar 

  • Chessman, B. C., P. E. Hutton & J. M. Burch, 1992. Limiting nutrients for periphyton growth in sub-alpine, forest, agricultural and urban streams. Freshwater Biology 28: 349–361.

    Article  Google Scholar 

  • Chróst, R. J., 1991. Environmental control of synthesis and activity of aquatic microbial ectoenzymes. In Chróst, R. J. (ed.), Microbial Enzymes in Aquatic Environments. Springer, New York.

    Chapter  Google Scholar 

  • Chróst, R. J. & J. Overbeck, 1987. Kinetics of alkaline phosphatase activity and phosphorus availability for phytoplankton and bacterioplankton in Lake Plubsee (North German eutrophic lake). Microbial Ecology 13: 229–248.

    Article  Google Scholar 

  • Cross, P. C., W. F. Cross & J. P. Benstead, 2005. Ecological stoichiometry in freshwater benthic ecosystems: an introduction. Freshwater Biology 50: 1781–1785.

    Article  Google Scholar 

  • Dodds, W. K., 1989. Photosynthesis of two morphologies of Nostoc parmelioides (Cyanobacteria) as related to current velocities and diffusion patterns. Journal of Phycology 25: 258–262.

    Article  Google Scholar 

  • Droop, M., 1974. The nutrient status of algal cells in continuous culture. Journal of the Marine Biological Association of the United Kingdom 9: 825–855.

    Article  Google Scholar 

  • Elser, J. J., M. E. S. Bracken, E. E. Cleland, D. S. Gruner, W. S. Harpole, H. Hillebrand, J. T. Ngai, E. W. Seabloom, J. B. Shurin & J. E. Smith, 2007. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecology Letters 10: 1135–1142.

    Article  Google Scholar 

  • Francouer, S. N., 2001. Meta-analysis of lotic nutrient amendment experiments: detecting and quantifying subtle responses. Journal of the North American Benthological Society 20: 358–368.

    Article  Google Scholar 

  • Francouer, S. N. & R. G. Wetzel, 2003. Regulation of periphytic leucine-aminopeptidase activity. Aquatic Microbial Ecology 31: 249–258.

    Article  Google Scholar 

  • Graba, M., S. Sauvage, F. Y. Moulin, G. Urrea, S. Sabater & J. M. Sanchéz-Perez, 2013. Interaction between local hydrodynamics and algal community in epilithic biofilm. Water Research 47: 2153–2163.

    Article  CAS  Google Scholar 

  • Healey, F. P. & L. L. Hendzel, 1979. Fluorometric measurement of alkaline phosphatase activity in algae. Freshwater Biology 9: 429–439.

    Article  CAS  Google Scholar 

  • Hein. M., 1997. Inorganic carbon limitation of photosynthesis in lake phytoplankton. Freshwater Biology 37: 545–552.

    Article  Google Scholar 

  • Hiatt, D. L., C. J. Robbins, J. A. Back, P. K. Kostka, R. D. Doyle, C. M. Walker, M. C. Rains, D. F. Whigham & R. S. King, 2017. Catchment-scale alder cover controls nitrogen fixation in boreal headwater streams. Freshwater Science 36: 533–541.

    Article  Google Scholar 

  • Horner, R. R. & E. B. Welch, 1981. Stream periphyton development in relation to current velocity and nutrients. Canadian Journal of Fisheries and Aquatic Sciences 38: 449–457.

    Article  Google Scholar 

  • Horner, R. R., E. B. Welch, M. R. Seeley & J. M. Jacoby, 1990. Responses of periphyton to changes in current velocity, suspended sediment and phosphorus concentration. Freshwater Biology 24: 215–232.

    Article  Google Scholar 

  • Ishikawa, N. F., I. Tayasu, M. Yamane, Y. Yokoyama, S. Sakai & N. Ohkouchi, 2015. Sources of dissolved inorganic carbon in two small streams with different bedrock geology: insights from carbon isotopes. Radiocarbon 57: 439–448.

    Article  CAS  Google Scholar 

  • Kahlert, M., 1998. C:N: P ratios of freshwater benthic algae. Archiv für Hydrobiologie 51: 105–114.

    CAS  Google Scholar 

  • King, R. S., K. O. Winemiller, J. M. Taylor, J. A. Back, & A. Pease, 2009. Development of biological indicators of nutrient enrichment for application in Texas streams. Texas Commission of Environmental Quality, Water Quality Assessment Program https://www.baylor.edu/content/services/document.php/107739.pdf.

  • King, R. S., M. Scoggins & A. Porras, 2016. Stream biodiversity is disproportionately lost to urbanization when flow permanence declines: evidence from southwestern North America. Freshwater Science 35: 340–352.

    Article  Google Scholar 

  • Lang, D. A., R. S. King & J. T. Scott, 2012. Divergent responses of biomass and enzyme activities suggest differential nutrient limitation in stream periphyton. Freshwater Science 31: 1096–1104.

    Article  Google Scholar 

  • Litchman, E. & B. L. V. Nguyen, 2008. Alkaline phosphatase activity as a function of internal phosphorus concentration in freshwater phytoplankton. Journal of Phycology 44: 1379–1383.

    Article  CAS  Google Scholar 

  • Litchman, E., D. Steiner & P. Bossard, 2003. Photosynthetic and growth responses of three freshwater algae to phosphorus limitation and daylength. Freshwater Biology 48: 2141–2148.

    Article  CAS  Google Scholar 

  • Lock, M. A. & P. H. John, 1979. The effect of flow patterns on uptake of phosphorus by river periphyton. Limnology and Oceanography 24: 376–383.

    Article  CAS  Google Scholar 

  • Momo, F. R., 1995. A new model for periphyton growth in running waters. Hydrobiologia 299: 215–218.

    Article  Google Scholar 

  • Neif, E. M., D. Graeber, L. Rodrigues, S. Rosenhøj-Leth, T. M. Jensen, P. Wiberg-Larsen, F. Landkildehus, T. Riis & A. Baattrup-Pedersen, 2017. Responses of benthic algal communities and their traits to experimental changes in fine sediments, nutrients and flow. Freshwater Biology 62: 1539–1550.

    Article  CAS  Google Scholar 

  • Pohlon, E., J. Marxsen & K. Kusel, 2010. Pioneering bacterial and algal communities and potential extracellular enzyme activity of stream biofilms. FEMS Microbiology Ecology 71: 364–373.

    Article  CAS  Google Scholar 

  • Price, K. J. & H. J. Carrick, 2016. Effects of experimental nutrient loading on phosphorus uptake by biofilms: evidence for nutrient saturation in mid-Atlantic streams. Freshwater Science 35: 503–507.

    Article  Google Scholar 

  • Proia, L., A. M. Romaní & S. Sabater, 2012. Nutrients and light effects on stream biofilms: a combined assessment with CLSM, structural and functional parameters. Hydrobiologia 695: 281–291.

    Article  CAS  Google Scholar 

  • R Core Team. 2014. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/.

  • Rier, S. T., K. S. Nawrocki & J. C. Whitley, 2011. Response of biofilm extracellular enzymes along a stream nutrient enrichment gradient in an agricultural region of north central Pennsylvania, USA. Hydrobiologia 669: 119–131.

    Article  CAS  Google Scholar 

  • Rier, S. T., K. C. Kinek, S. E. Hay & S. N. Francouer, 2016. Polyphosphate plays a vital role in the phosphorus dynamics of stream periphyton. Freshwater Science 35: 490–502.

    Article  Google Scholar 

  • Romaní, A. M. & S. Sabater, 2000. Influence of algal biomass on extracellular enzyme activity in river biofilms. Microbial Ecology 41: 16–24.

    Article  Google Scholar 

  • Saravia, L. A., F. Momo & L. D. Boffi Lissin, 1998. Modelling periphyton dynamics in running water. Ecological Modelling 114: 35–47.

    Article  Google Scholar 

  • Scott, J. T., J. A. Back, J. M. Taylor & R. S. King, 2008. Does nutrient enrichment decouple algal-bacterial production in periphyton? Journal of the North American Benthological Society 27: 332–334.

    Article  Google Scholar 

  • Scott, J. T., D. A. Lang, R. S. King & R. D. Doyle, 2009. Nitrogen fixation and phosphatase activity in periphyton growing on nutrient diffusing substrata: evidence for differential nutrient limitation in stream benthos. Journal of the North American Benthological Society 28: 57–68.

    Article  Google Scholar 

  • Sinsabaugh, R. L. & J. J. Follstad Shah, 2012. Ecoenzymatic stoichiometry and ecological theory. Annual Review of Ecology, Evolution and Systematics 43: 313–342.

    Article  Google Scholar 

  • Sinsabaugh, R. L. & A. E. Linkins, 1988. Exoenzyme activity associated with lotic epilithon. Freshwater Biology 20: 249–261.

    Article  CAS  Google Scholar 

  • Sinsabaugh, R. L., D. J. Van Horn, J. J. Follstad Shah & S. G. Findlay, 2010. Ecoenzymatic stoichiometry in relation to productivity for freshwater biofilm and plankton communities. Microbial Ecology 60: 885–893.

    Article  Google Scholar 

  • Sinsabaugh, R. L., J. Belnap, S. G. Findlay, J. J. Follstad Shah, B. H. Hill, K. A. Kuehn, C. R. Kuske, M. E. Litvak, N. G. Martinez, D. L. Moorhead & D. D. Warnock, 2014. Extracellular enzyme kinetics scale with resource availability. Biogeochemistry 121: 287–304.

    Article  CAS  Google Scholar 

  • Steinman, A. D. & G. A. Lamberti, 1996. Biomass and pigments of benthic algae. In Hauer, F. R. & G. A. Lamberti (eds), Methods in Stream Ecology. Academic Press, San Diego: 295–313.

    Google Scholar 

  • Sterner, R. W. & J. J. Elser, 2002. Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere. Princeton University Press, Princeton.

    Google Scholar 

  • Stevenson, R. J. & E. F. Stoermer, 1982. Luxury consumption of phosphorus by five Cladophora epiphytes in Lake Huron. Transactions of the American Microscopical Society 101: 151–161.

    Article  CAS  Google Scholar 

  • Stevenson, R. J., P. G. Christopher, D. B. Kirschtel, C. C. King & N. C. Tuchman, 1991. Density dependent growth, ecological strategies and effects of nutrients and shading on benthic diatom succession in streams. Journal of Phycology 27: 59–69.

    Article  Google Scholar 

  • Tank, J. L. & W. K. Dodds, 2003. Nutrient limitation of epilithic and epixylic biofilms in 10 North American streams. Freshwater Biology 48: 1031–1049.

    Article  CAS  Google Scholar 

  • Tank, J. L. & J. R. Webster, 1998. Interaction of substrate and nutrient availability on wood biofilm processes in streams. Ecology 57: 707–719.

    Google Scholar 

  • Taylor, J. M., R. S. King, A. Pease & K. O. Winemiller, 2014. Nonlinear response in stream ecosystem structure to low level phosphorus enrichment. Freshwater Biology 59: 969–984.

    Article  CAS  Google Scholar 

  • Taylor, J. M., J. A. Back, B. W. Brooks & R. S. King, 2018. Spatial, temporal, and experimental: three study design cornerstones for establishing defensible numeric criteria for freshwater ecosystems. Journal of Applied Ecology. https://doi.org/10.1111/1365-2664.13150.

    Article  Google Scholar 

  • Venables, W. N. & B. D. Ripley, 2002. Modern Applied Statistics with S, 4th ed. Springer, New York.

    Book  Google Scholar 

  • Whitford, L. A., 1960. The current effect and growth of freshwater algae. Transactions of the American Microscopical Society 79: 302–309.

    Article  Google Scholar 

  • Zuur, A. F., E. N. Ieno, N. Walker, A. A. Saveliev & G. M. Smith, 2009. Mixed effects models and extensions in ecology with R. Springer, New York.

    Book  Google Scholar 

Download references

Acknowledgements

We would like to thank the Center for Reservoir and Aquatic Systems Research (CRASR) lab. We would also like to thank Alyse Yeager and Stephen Cook for field sampling support and Robert Doyle for help with APA assays. Funding was provided by the Jack G. and Norma Jean Folmar Research Fund, and the C. Gus Glasscock, Jr. Endowed Fund for Excellence in Environmental Sciences in the College of Arts and Sciences at Baylor University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel L. Hiatt.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling editor: Eric Larson

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hiatt, D.L., Back, J.A. & King, R.S. Effects of stream velocity and phosphorus concentrations on alkaline phosphatase activity and carbon:phosphorus ratios in periphyton. Hydrobiologia 826, 173–182 (2019). https://doi.org/10.1007/s10750-018-3727-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-018-3727-4

Keywords

Navigation