Skip to main content

Effects of stream velocity and phosphorus concentrations on alkaline phosphatase activity and carbon:phosphorus ratios in periphyton

Abstract

We studied several streams spanning a steep dissolved phosphorus (PO4–P) gradient to test the hypothesis that faster stream velocity would reduce alkaline phosphatase activity (APA) and carbon:phosphorus (C:P) of benthic periphyton because higher velocities should increase the supply rate of dissolved phosphorus at the community–water interface. We tested the hypothesis that the differences in APA and C:P between fast and slow velocity locations within a stream reach would decline as stream PO4–P concentrations increased, and, therefore, velocity effects should be the greatest at low levels of PO4–P. APA declined in response to both the increased water velocity and PO4–P, but the effect of velocity on APA was negligible at the highest levels of PO4–P. Further, we found a strong, negative relationship between periphyton C:P and PO4–P levels as hypothesized, but did not detect significant relationship between C:P and velocity after accounting for the effects of PO4–P. The lack of an effect of velocity on C:P is probably due to the higher levels of APA in low-velocity, low PO4–P reaches, as the higher APA rates reflect an alternative pathway for acquiring sufficient PO4–P to sustain periphytic growth and metabolism. These results have important implications for stream ecosystem function because of the increasing frequency of extreme weather events associated with the climate change, particularly droughts that reduce or eliminate perennial stream flow, and further illustrate the important effects of stream flow on biogeochemical processes.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. American Public Health Association (APHA), 2005. Standard Methods for the Examination of Water and Wastewater. American Public Health Association, Washington, D.C.

    Google Scholar 

  2. Arnosti, C., C. Bell, D. L. Moorhead, R. L. Sinsabaugh, M. Stromberger, M. Wallenstein & M. Weintraub, 2013. Extracellular enzymes in terrestrial, freshwater, and marine environments: system variability and common needs. Biogeochemistry 117: 5–21.

    Article  Google Scholar 

  3. Asaeda, T. & D. H. Son, 2001. A model of the development of a periphyton community: resource and flow dynamics. Ecological Modeling 137: 61–75.

    CAS  Article  Google Scholar 

  4. Battin, T. J., L. A. Kaplan, J. D. Newbold, X. Cheng & C. Hansen, 2003. Effects of current velocity on the nascent architecture of stream microbial biofilms. Applied and Environmental Microbiology 69: 5443–5452.

    CAS  Article  Google Scholar 

  5. Biggs, B. J. F. & M. E. Close, 1989. Periphyton biomass dynamics in gravel bed rivers: the relative effects of flows and nutrients. Freshwater Biology 22: 209–231.

    CAS  Article  Google Scholar 

  6. Biggs, B. J. F. & C. W. Hickey, 1994. Periphyton responses to a hydraulic gradient in a regulated river, New Zealand. Freshwater Biology 22: 209–231.

    Article  Google Scholar 

  7. Biggs, B. J. F. & C. Kilroy, 2000. Stream Periphyton Monitoring Manual. NIWA, Christchurch.

    Google Scholar 

  8. Biggs, B. J. F. & S. Stokseth, 1996. Hydraulic habitat suitability for periphyton in rivers. Regulated Rivers: Research and Management 12: 251–261.

    Article  Google Scholar 

  9. Biggs, B. J. F., D. G. Goring & V. I. Nikora, 1998. Subsidy and stress responses of stream periphyton to gradients in water velocity as a function of community growth form. Journal of Phycology 34: 598–607.

    Article  Google Scholar 

  10. Borchardt, M. A., 1996. Nutrients. In Stevenson, R. J., M. L. Bothwell & R. L. Lowe (eds), Aquatic Ecology. Academic Press, San Diego: 183–227.

    Google Scholar 

  11. Bothwell, M. L., 1985. Phosphorus limitation of lotic periphyton growth rates: an intersite comparison using continuous-flow troughs (Thompson River system, British Columbia). Limnology and Oceanography 30: 527–542.

    Article  Google Scholar 

  12. Chambers, P. A., J. M. Culp, N. E. Glozier, K. J. Cash, F. J. Wrona & L. Noton, 2006. Northern rivers ecosystem initiative: nutrients and dissolved oxygen – issues and impacts. Environmental Monitoring and Assessment 113: 117–141.

    CAS  Article  Google Scholar 

  13. Chessman, B. C., P. E. Hutton & J. M. Burch, 1992. Limiting nutrients for periphyton growth in sub-alpine, forest, agricultural and urban streams. Freshwater Biology 28: 349–361.

    Article  Google Scholar 

  14. Chróst, R. J., 1991. Environmental control of synthesis and activity of aquatic microbial ectoenzymes. In Chróst, R. J. (ed.), Microbial Enzymes in Aquatic Environments. Springer, New York.

    Chapter  Google Scholar 

  15. Chróst, R. J. & J. Overbeck, 1987. Kinetics of alkaline phosphatase activity and phosphorus availability for phytoplankton and bacterioplankton in Lake Plubsee (North German eutrophic lake). Microbial Ecology 13: 229–248.

    Article  Google Scholar 

  16. Cross, P. C., W. F. Cross & J. P. Benstead, 2005. Ecological stoichiometry in freshwater benthic ecosystems: an introduction. Freshwater Biology 50: 1781–1785.

    Article  Google Scholar 

  17. Dodds, W. K., 1989. Photosynthesis of two morphologies of Nostoc parmelioides (Cyanobacteria) as related to current velocities and diffusion patterns. Journal of Phycology 25: 258–262.

    Article  Google Scholar 

  18. Droop, M., 1974. The nutrient status of algal cells in continuous culture. Journal of the Marine Biological Association of the United Kingdom 9: 825–855.

    Article  Google Scholar 

  19. Elser, J. J., M. E. S. Bracken, E. E. Cleland, D. S. Gruner, W. S. Harpole, H. Hillebrand, J. T. Ngai, E. W. Seabloom, J. B. Shurin & J. E. Smith, 2007. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecology Letters 10: 1135–1142.

    Article  Google Scholar 

  20. Francouer, S. N., 2001. Meta-analysis of lotic nutrient amendment experiments: detecting and quantifying subtle responses. Journal of the North American Benthological Society 20: 358–368.

    Article  Google Scholar 

  21. Francouer, S. N. & R. G. Wetzel, 2003. Regulation of periphytic leucine-aminopeptidase activity. Aquatic Microbial Ecology 31: 249–258.

    Article  Google Scholar 

  22. Graba, M., S. Sauvage, F. Y. Moulin, G. Urrea, S. Sabater & J. M. Sanchéz-Perez, 2013. Interaction between local hydrodynamics and algal community in epilithic biofilm. Water Research 47: 2153–2163.

    CAS  Article  Google Scholar 

  23. Healey, F. P. & L. L. Hendzel, 1979. Fluorometric measurement of alkaline phosphatase activity in algae. Freshwater Biology 9: 429–439.

    CAS  Article  Google Scholar 

  24. Hein. M., 1997. Inorganic carbon limitation of photosynthesis in lake phytoplankton. Freshwater Biology 37: 545–552.

    Article  Google Scholar 

  25. Hiatt, D. L., C. J. Robbins, J. A. Back, P. K. Kostka, R. D. Doyle, C. M. Walker, M. C. Rains, D. F. Whigham & R. S. King, 2017. Catchment-scale alder cover controls nitrogen fixation in boreal headwater streams. Freshwater Science 36: 533–541.

    Article  Google Scholar 

  26. Horner, R. R. & E. B. Welch, 1981. Stream periphyton development in relation to current velocity and nutrients. Canadian Journal of Fisheries and Aquatic Sciences 38: 449–457.

    Article  Google Scholar 

  27. Horner, R. R., E. B. Welch, M. R. Seeley & J. M. Jacoby, 1990. Responses of periphyton to changes in current velocity, suspended sediment and phosphorus concentration. Freshwater Biology 24: 215–232.

    Article  Google Scholar 

  28. Ishikawa, N. F., I. Tayasu, M. Yamane, Y. Yokoyama, S. Sakai & N. Ohkouchi, 2015. Sources of dissolved inorganic carbon in two small streams with different bedrock geology: insights from carbon isotopes. Radiocarbon 57: 439–448.

    CAS  Article  Google Scholar 

  29. Kahlert, M., 1998. C:N: P ratios of freshwater benthic algae. Archiv für Hydrobiologie 51: 105–114.

    CAS  Google Scholar 

  30. King, R. S., K. O. Winemiller, J. M. Taylor, J. A. Back, & A. Pease, 2009. Development of biological indicators of nutrient enrichment for application in Texas streams. Texas Commission of Environmental Quality, Water Quality Assessment Program https://www.baylor.edu/content/services/document.php/107739.pdf.

  31. King, R. S., M. Scoggins & A. Porras, 2016. Stream biodiversity is disproportionately lost to urbanization when flow permanence declines: evidence from southwestern North America. Freshwater Science 35: 340–352.

    Article  Google Scholar 

  32. Lang, D. A., R. S. King & J. T. Scott, 2012. Divergent responses of biomass and enzyme activities suggest differential nutrient limitation in stream periphyton. Freshwater Science 31: 1096–1104.

    Article  Google Scholar 

  33. Litchman, E. & B. L. V. Nguyen, 2008. Alkaline phosphatase activity as a function of internal phosphorus concentration in freshwater phytoplankton. Journal of Phycology 44: 1379–1383.

    CAS  Article  Google Scholar 

  34. Litchman, E., D. Steiner & P. Bossard, 2003. Photosynthetic and growth responses of three freshwater algae to phosphorus limitation and daylength. Freshwater Biology 48: 2141–2148.

    CAS  Article  Google Scholar 

  35. Lock, M. A. & P. H. John, 1979. The effect of flow patterns on uptake of phosphorus by river periphyton. Limnology and Oceanography 24: 376–383.

    CAS  Article  Google Scholar 

  36. Momo, F. R., 1995. A new model for periphyton growth in running waters. Hydrobiologia 299: 215–218.

    Article  Google Scholar 

  37. Neif, E. M., D. Graeber, L. Rodrigues, S. Rosenhøj-Leth, T. M. Jensen, P. Wiberg-Larsen, F. Landkildehus, T. Riis & A. Baattrup-Pedersen, 2017. Responses of benthic algal communities and their traits to experimental changes in fine sediments, nutrients and flow. Freshwater Biology 62: 1539–1550.

    CAS  Article  Google Scholar 

  38. Pohlon, E., J. Marxsen & K. Kusel, 2010. Pioneering bacterial and algal communities and potential extracellular enzyme activity of stream biofilms. FEMS Microbiology Ecology 71: 364–373.

    CAS  Article  Google Scholar 

  39. Price, K. J. & H. J. Carrick, 2016. Effects of experimental nutrient loading on phosphorus uptake by biofilms: evidence for nutrient saturation in mid-Atlantic streams. Freshwater Science 35: 503–507.

    Article  Google Scholar 

  40. Proia, L., A. M. Romaní & S. Sabater, 2012. Nutrients and light effects on stream biofilms: a combined assessment with CLSM, structural and functional parameters. Hydrobiologia 695: 281–291.

    CAS  Article  Google Scholar 

  41. R Core Team. 2014. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/.

  42. Rier, S. T., K. S. Nawrocki & J. C. Whitley, 2011. Response of biofilm extracellular enzymes along a stream nutrient enrichment gradient in an agricultural region of north central Pennsylvania, USA. Hydrobiologia 669: 119–131.

    CAS  Article  Google Scholar 

  43. Rier, S. T., K. C. Kinek, S. E. Hay & S. N. Francouer, 2016. Polyphosphate plays a vital role in the phosphorus dynamics of stream periphyton. Freshwater Science 35: 490–502.

    Article  Google Scholar 

  44. Romaní, A. M. & S. Sabater, 2000. Influence of algal biomass on extracellular enzyme activity in river biofilms. Microbial Ecology 41: 16–24.

    Article  Google Scholar 

  45. Saravia, L. A., F. Momo & L. D. Boffi Lissin, 1998. Modelling periphyton dynamics in running water. Ecological Modelling 114: 35–47.

    Article  Google Scholar 

  46. Scott, J. T., J. A. Back, J. M. Taylor & R. S. King, 2008. Does nutrient enrichment decouple algal-bacterial production in periphyton? Journal of the North American Benthological Society 27: 332–334.

    Article  Google Scholar 

  47. Scott, J. T., D. A. Lang, R. S. King & R. D. Doyle, 2009. Nitrogen fixation and phosphatase activity in periphyton growing on nutrient diffusing substrata: evidence for differential nutrient limitation in stream benthos. Journal of the North American Benthological Society 28: 57–68.

    Article  Google Scholar 

  48. Sinsabaugh, R. L. & J. J. Follstad Shah, 2012. Ecoenzymatic stoichiometry and ecological theory. Annual Review of Ecology, Evolution and Systematics 43: 313–342.

    Article  Google Scholar 

  49. Sinsabaugh, R. L. & A. E. Linkins, 1988. Exoenzyme activity associated with lotic epilithon. Freshwater Biology 20: 249–261.

    CAS  Article  Google Scholar 

  50. Sinsabaugh, R. L., D. J. Van Horn, J. J. Follstad Shah & S. G. Findlay, 2010. Ecoenzymatic stoichiometry in relation to productivity for freshwater biofilm and plankton communities. Microbial Ecology 60: 885–893.

    Article  Google Scholar 

  51. Sinsabaugh, R. L., J. Belnap, S. G. Findlay, J. J. Follstad Shah, B. H. Hill, K. A. Kuehn, C. R. Kuske, M. E. Litvak, N. G. Martinez, D. L. Moorhead & D. D. Warnock, 2014. Extracellular enzyme kinetics scale with resource availability. Biogeochemistry 121: 287–304.

    CAS  Article  Google Scholar 

  52. Steinman, A. D. & G. A. Lamberti, 1996. Biomass and pigments of benthic algae. In Hauer, F. R. & G. A. Lamberti (eds), Methods in Stream Ecology. Academic Press, San Diego: 295–313.

    Google Scholar 

  53. Sterner, R. W. & J. J. Elser, 2002. Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere. Princeton University Press, Princeton.

    Google Scholar 

  54. Stevenson, R. J. & E. F. Stoermer, 1982. Luxury consumption of phosphorus by five Cladophora epiphytes in Lake Huron. Transactions of the American Microscopical Society 101: 151–161.

    CAS  Article  Google Scholar 

  55. Stevenson, R. J., P. G. Christopher, D. B. Kirschtel, C. C. King & N. C. Tuchman, 1991. Density dependent growth, ecological strategies and effects of nutrients and shading on benthic diatom succession in streams. Journal of Phycology 27: 59–69.

    Article  Google Scholar 

  56. Tank, J. L. & W. K. Dodds, 2003. Nutrient limitation of epilithic and epixylic biofilms in 10 North American streams. Freshwater Biology 48: 1031–1049.

    CAS  Article  Google Scholar 

  57. Tank, J. L. & J. R. Webster, 1998. Interaction of substrate and nutrient availability on wood biofilm processes in streams. Ecology 57: 707–719.

    Google Scholar 

  58. Taylor, J. M., R. S. King, A. Pease & K. O. Winemiller, 2014. Nonlinear response in stream ecosystem structure to low level phosphorus enrichment. Freshwater Biology 59: 969–984.

    CAS  Article  Google Scholar 

  59. Taylor, J. M., J. A. Back, B. W. Brooks & R. S. King, 2018. Spatial, temporal, and experimental: three study design cornerstones for establishing defensible numeric criteria for freshwater ecosystems. Journal of Applied Ecology. https://doi.org/10.1111/1365-2664.13150.

    Article  Google Scholar 

  60. Venables, W. N. & B. D. Ripley, 2002. Modern Applied Statistics with S, 4th ed. Springer, New York.

    Book  Google Scholar 

  61. Whitford, L. A., 1960. The current effect and growth of freshwater algae. Transactions of the American Microscopical Society 79: 302–309.

    Article  Google Scholar 

  62. Zuur, A. F., E. N. Ieno, N. Walker, A. A. Saveliev & G. M. Smith, 2009. Mixed effects models and extensions in ecology with R. Springer, New York.

    Book  Google Scholar 

Download references

Acknowledgements

We would like to thank the Center for Reservoir and Aquatic Systems Research (CRASR) lab. We would also like to thank Alyse Yeager and Stephen Cook for field sampling support and Robert Doyle for help with APA assays. Funding was provided by the Jack G. and Norma Jean Folmar Research Fund, and the C. Gus Glasscock, Jr. Endowed Fund for Excellence in Environmental Sciences in the College of Arts and Sciences at Baylor University.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Daniel L. Hiatt.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling editor: Eric Larson

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hiatt, D.L., Back, J.A. & King, R.S. Effects of stream velocity and phosphorus concentrations on alkaline phosphatase activity and carbon:phosphorus ratios in periphyton. Hydrobiologia 826, 173–182 (2019). https://doi.org/10.1007/s10750-018-3727-4

Download citation

Keywords

  • Flow regime
  • Flow intermittence
  • Water velocity
  • Stoichiometry
  • Exoenzymes
  • Eutrophication
  • Streams
  • Ecoenzymes
  • Benthic periphyton