, Volume 826, Issue 1, pp 99–111 | Cite as

Cryptic lineages and hybridization of the predaceous chub Parazacco spilurus (Actinopterygii, Cypriniformes, Xenocyprididae) in Hong Kong

  • Tsz Huen Wu
  • Ling Ming Tsang
  • Lai Him Chow
  • I-Shiung Chen
  • Ka Hou Chu
Primary Research Paper


Fine-scale genetic studies are essential for understanding population connectivity and formulating appropriate conservation measures for freshwater inhabitants. Despite their significance, such studies remain relatively limited in South China and Asia in general. We examined the genetic structure of the predaceous chub Parazacco spilurus in Hong Kong by incorporating genetic data from both mitochondrial (control region and cytochrome b oxidase gene) and nuclear (recombination-activating gene 1) DNA markers. We identified two highly divergent lineages having discrete distribution ranges with limited overlap near two reservoirs located in north-eastern (Plover Cove Reservoir) and south-eastern (Tai Tam Tuk Reservoir) Hong Kong. Each lineage is further divided into sublineages with geographical association. As such, gene flow is highly restricted at both sublineage and population levels. Despite the presence of sublineages, inter-lineage divergence is far greater than that divergence within lineage. It also exceeds the species divergence in closely related cyprinid genera, suggesting that the two lineages recovered potentially represent two distinct species. Yet genetic analyses based on the nuclear marker indicated a low degree of hybridization between the lineages at two closely situated localities. This study provides insights on the possible direction of conservation plans for P. spilurus in Hong Kong and South China.


Cryptic diversity Freshwater fish Population genetics 



This work was supported by the two research grants (33/2009 and 28/2013) from the Environment and Conservation Fund, Hong Kong SAR, China. We thank B. T. S. Bui, K. Y. Lau, C. P. Li, and K. C. Cheung (The Chinese University of Hong Kong) for field collection and technical assistance. Thanks also go to the staff of the Agriculture, Fisheries and Conservation Department, Hong Kong SAR Government for their valuable advice on field sites for sampling. The authors offer their appreciation to K. Y. Ma (The Chinese University of Hong Kong) and D. Dudgeon (The University of Hong Kong) for their inspiring discussion.


This work was supported by the two research grants (33/2009 and 28/2013) from the Environment and Conservation Fund, Hong Kong SAR, China.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10750_2018_3720_MOESM1_ESM.docx (1.2 mb)
Supplementary material 1 (DOCX 1231 kb)


  1. Alves, M. J., H. Coelho, M. J. Collares-Pereira & M. M. Coelho, 2001. Mitochondrial DNA variation in the highly endangered cyprinid fish Anaecypris hispanica: importance for conservation. Heredity 87: 463–473.CrossRefGoogle Scholar
  2. April, J., R. H. Hanner, A. M. Dion-Côté & L. Bernatchez, 2013. Glacial cycles as an allopatric speciation pump in north-eastern American freshwater fishes. Molecular Ecology 22: 409–422.CrossRefGoogle Scholar
  3. Avise, J. C., 1992. Molecular population structure and the biogeographic history of a regional fauna: a case history with lessons for conservation biology. Oikos 63: 62–76.CrossRefGoogle Scholar
  4. Avise, J. C., 2000. Phylogeography: The History and Formation of Species. Harvard University Press, Cambridge.Google Scholar
  5. Behm, J. E., A. R. Ives & J. W. Boughman, 2009. Breakdown in postmating isolation and the collapse of a species pair through hybridization. American Naturalist 175: 11–26.CrossRefGoogle Scholar
  6. Betancur-R, R., E. O. Wiley, G. Arratia, A. Acero, N. Bailly, M. Miya, G. Lecointre & G. Ortí, 2017. Phylogenetic classification of bony fishes. BMC Evolutionary Biology 17: 162.CrossRefGoogle Scholar
  7. Chan, E. K. W., Y. Zhang & D. Dudgeon, 2008. Arthropod ‘rain’ into tropical streams: the importance of intact riparian forest and influences on fish diets. Marine and Freshwater Research 59: 653–660.CrossRefGoogle Scholar
  8. Chen, Y. Y., 1982. A revision of opsariichthine cyprinid fishes. Oceanologia et Limnologia Sinica 13: 293–299.Google Scholar
  9. Clement, M., D. Posada & K. A. Crandall, 2000. TCS: a computer program to estimate gene genealogies. Molecular Ecology 9: 1657–1659.CrossRefGoogle Scholar
  10. Cook, B. D., M. J. Kennard, K. Real, B. J. Pusey & J. M. Hughes, 2011. Landscape genetic analysis of the tropical freshwater fish Mogurnda mogurnda (Eleotridae) in a monsoonal river basin: importance of hydrographic factors and population history. Freshwater Biology 56: 812–827.CrossRefGoogle Scholar
  11. Culling, M. A., K. Janko, A. Boron, E. Vasil, P. Victor, I. M. Côté & G. M. Hewitt, 2006. European colonization by the spined loach (Cobitis taenia) from Ponto-Caspian refugia based on mitochondrial DNA variation. Molecular Ecology 15: 173–190.CrossRefGoogle Scholar
  12. De Bruyn, M. & P. B. Mather, 2007. Molecular signatures of Pleistocene sea-level changes that affected connectivity among freshwater shrimp in Indo-Australian waters. Molecular Ecology 20: 4295–4307.CrossRefGoogle Scholar
  13. Drummond, A. J., M. A. Suchard, D. Xie & A. Rambaut, 2012. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution 29: 1969–1973.CrossRefGoogle Scholar
  14. Dudgeon, D., 1996. Anthropogenic influences on Hong Kong streams. GeoJournal 40: 53–61.CrossRefGoogle Scholar
  15. Dudgeon, D., 2003. Clinging to the wreckage: unexpected persistence of freshwater biodiversity in a degraded tropical landscape. Aquatic Conservation: Marine and Freshwater Ecosystems 13: 93–97.CrossRefGoogle Scholar
  16. Edgar, R. C., 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32: 1792–1797.CrossRefGoogle Scholar
  17. Excoffier, L., G. Laval & S. Schneider, 2005. Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evolutionary Bioinformatics 1: 47–50.CrossRefGoogle Scholar
  18. Eytan, R. I. & M. E. Hellberg, 2010. Nuclear and mitochondrial sequence data reveal and conceal different demographic histories and population genetic processes in Caribbean reef fishes. Evolution 64: 3380–3397.CrossRefGoogle Scholar
  19. Flot, J. F., 2010. SeqPHASE: a web tool for interconverting phase input/output files and fasta sequence alignments. Molecular Ecology Resources 10: 162–166.CrossRefGoogle Scholar
  20. Fu, Y. X., 1997. Statistical tests of neutrality of mutations against population growth, hitchhiking, and background selection. Genetics 147: 915–925.PubMedPubMedCentralGoogle Scholar
  21. Fyfe, J. A., R. Shaw, S. D. G. Campbell, K. W. Lai & P. A. Kirk, 2000. The Quaternary Geology of Hong Kong. Geotechnical Engineering Office, Civil Engineering Department, Hong Kong.Google Scholar
  22. George, A. L., B. R. Kuhajda, J. D. Williams, M. A. Cantrell, P. L. Rakes & J. R. Shute, 2009. Guidelines for propagation and translocation for freshwater fish conservation. Fisheries 34: 529–545.CrossRefGoogle Scholar
  23. Grant, W. A. S. & B. W. Bowen, 1998. Shallow population histories in deep evolutionary lineages of marine fishes: insights from sardines and anchovies and lessons for conservation. Journal of Heredity 89: 415–426.CrossRefGoogle Scholar
  24. Gum, B., R. Gross & R. Kuehn, 2005. Mitochondrial and nuclear DNA phylogeography of European grayling (Thymallus thymallus): evidence for secondary contact zones in central Europe. Molecular Ecology 14: 1707–1725.CrossRefGoogle Scholar
  25. Harris, J. H., 1995. The use of fish in ecological assessments. Australian Journal of Ecology 20: 65–80.CrossRefGoogle Scholar
  26. Ho, B. S. K. & D. Dudgeon, 2015. Movement of three stream-resident balitoroid loaches and a goby in a Hong Kong hillstream. Ecology of Freshwater Fish 25: 622–630.CrossRefGoogle Scholar
  27. Huckstorf, V., 2012. Parazacco spilurus. In IUCN Red List of Threatened Species, Version 2012.2. Available at:
  28. Hughes, J., K. Goudkamp, D. Hurwood, M. Hancock & S. Bunn, 2002. Translocation causes extinction of a local population of the freshwater shrimp Paratya australiensis. Conservation Biology 17: 1007–1012.CrossRefGoogle Scholar
  29. Huxel, G. R., 1999. Rapid displacement of native species by invasive species: effects of hybridization. Biological Conservation 89: 143–152.CrossRefGoogle Scholar
  30. Huynh, T. Q. & I.-S. Chen, 2013. A new species of cyprinid fish of genus Opsariichthys from Ky Cung-Bang Giang river basin, northern Vietnam with notes on the taxonomic status of the genus from northern Vietnam and southern China. Journal of Marine Science and Technology 21: 135–145.Google Scholar
  31. Ichthyological Society of Hong Kong, 2013. PARAZACCO SPILURUS (GÜNTHER, 1868). Available at:
  32. Ito, T. & K. Hosoya, 2016. Re-examination of the type series of Parazacco spilurus (Teleostei: Cyprinidae). FishTaxa 1: 89–93.Google Scholar
  33. Jean, C. T., C. Y. Wu, K. C. Tsai, W. K. Wang, Y. Y. Hsu, Y. M. Chang & H. D. Lin, 2014. Population genetic structure in the endemic cyprinid fish Microphysogobio alticorpus in Taiwan: evidence for a new phylogeographical area. Biochemical Systematics and Ecology 57: 108–116.CrossRefGoogle Scholar
  34. Joy, M. K. & R. G. Death, 2002. Predictive modelling of freshwater fish as a biomonitoring tool in New Zealand. Freshwater Biology 47: 2261–2275.CrossRefGoogle Scholar
  35. Kanno, Y., J. C. Vokoun & B. H. Letcher, 2011. Fine-scale population structure and riverscape genetics of brook trout (Salvelinus fontinalis) distributed continuously along headwater channel networks. Molecular Ecology 20: 3711–3729.CrossRefGoogle Scholar
  36. Karr, J. R., 1981. Assessment of biotic integrity using fish communities. Fisheries 6: 21–27.CrossRefGoogle Scholar
  37. Koblmuller, S., K. M. Sefc, N. Duftner, M. Warum & C. Sturmbauer, 2007. Genetic population structure as indirect measure of dispersal ability in a Lake Tanganyika cichlid. Genetica 130: 121–131.CrossRefGoogle Scholar
  38. Kocher, T. D., 2004. Adaptive evolution and explosive speciation: the cichlid fish model. Nature Reviews Genetics 5: 288–298.CrossRefGoogle Scholar
  39. Lau, D. C. P., K. M. Y. Leung & D. Dudgeon, 2008. What does stable isotope analysis reveal about trophic relationships and the relative importance of allochthonous and autochthonous resources in tropical streams? A synthetic study from Hong Kong. Freshwater Biology 54: 127–141.CrossRefGoogle Scholar
  40. Lee, V. L. F., S. K. S. Lam, F. K. Y. Ng, T. K. T. Chan & M. L. C. Young, 2004. Field Guide to the Freshwater Fish of Hong Kong. Friends of the Country Parks and Cosmos Books Limited, Hong Kong.Google Scholar
  41. Li, L., L. Fan & J. S. Zhong, 2008. Study on the early development of Rhinogobius duospilus larvae. Journal of Shanghai Fisheries University 17: 447–451 (in Chinese with English synopsis).Google Scholar
  42. Lu, G., S. Li & L. Bernatchez, 1997. Mitochondrial DNA diversity, population structure, and conservation genetics of four native carps within the Yangtze River, China. Canadian Journal of Fisheries and Aquatic Sciences 54: 47–58.CrossRefGoogle Scholar
  43. Marchetto, F., S. Zaccara, F. M. Muenzel & W. Salzburger, 2010. Phylogeography of the Italian vairone (Telestes muticellus, Bonaparte 1837) inferred by microsatellite markers: evolutionary history of a freshwater fish species with a restricted and fragmented distribution. BMC Evolutionary Biology 10: 111.CrossRefGoogle Scholar
  44. Markert, J. A., M. E. Arnegard, P. D. Danley & T. D. Kocher, 1999. Biogeography and population genetics of the Lake Malawi cichlid Melanochromis auratus: habitat transience, philopatry and speciation. Molecular Ecology 8: 1013–1026.CrossRefGoogle Scholar
  45. Meirmans, P. G. & P. H. van Tienderen, 2004. GENOTYPE and GENODIVE: two programs for the analysis of genetic diversity of asexual organisms. Molecular Ecology Notes 4: 792–794.CrossRefGoogle Scholar
  46. Mishler, B. D. & M. J. Donoghue, 1982. Species concepts: a case for pluralism. Systematic Zoology 31: 491–503.CrossRefGoogle Scholar
  47. Naylor, R., K. Hindar, I. A. Fleming, R. Goldburg, S. Williams, J. Volpe, F. Whoriskey, J. Eagle, D. Kelso & M. Mangel, 2005. Fugitive salmon: assessing the risks of escaped fish from net-pen aquaculture. BioScience 55: 427–437.CrossRefGoogle Scholar
  48. Okuda, N., S. Ito & H. Iwao, 2002. Female spawning strategy in Rhinogobius sp. OR: how do females deposit their eggs in the nest? Ichthyological Research 49: 371–379.CrossRefGoogle Scholar
  49. Palstra, F. P., M. F. O’Connell & D. E. Ruzzante, 2007. Population structure and gene flow reversals in Atlantic salmon (Salmo salar) over contemporary and long-term temporal scales: effects of population size and life history. Molecular Ecology 16: 4504–4522.CrossRefGoogle Scholar
  50. Posada, D., 2008. jModelTest: phylogenetic model averaging. Molecular Phylogenetics and Evolution 25: 1253–1256.Google Scholar
  51. Rambaut, A., A. J. Drummond, D. Xie, G. Baele & M. A. Suchard, 2009. Tracer v1.5. Available at:
  52. Ruzzante, D. E., S. J. Walde, V. E. Cussac, M. L. Dalebout, J. Seibert, S. Ortubay & E. Habit, 2006. Phylogeography of the Percichthyidae (Pisces) in Patagonia: roles of orogeny, glaciation, and volcanism. Molecular Ecology 15: 2949–2968.CrossRefGoogle Scholar
  53. Salzburger, W. & A. Meyer, 2004. The species flocks of East African cichlid fishes: recent advances in molecular phylogenetics and population genetics. The Science of Nature 91: 277–290.CrossRefGoogle Scholar
  54. Seehausen, O., J. J. M. van Alphen & F. Witte, 1997. Cichlid fish diversity threatened by eutrophication that curbs sexual selection. Science 277: 1808–1811.CrossRefGoogle Scholar
  55. Slatkin, M., 1987. Gene flow and the geographic structure of natural populations. Science 236: 787–793.CrossRefGoogle Scholar
  56. Stephens, M. & P. Donnelly, 2003. A comparison of Bayesian methods for haplotype reconstruction from population genotype data. The American Journal of Human Genetics 73: 1162–1169.CrossRefGoogle Scholar
  57. Stout, C. C., M. Tan, A. R. Lemmon, E. M. Lemmon & J. W. Armbruster, 2016. Resolving Cypriniformes relationships using an anchored enrichment approach. BMC Evolutionary Biology 16: 244.CrossRefGoogle Scholar
  58. Tajima, F., 1989. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123: 585–595.PubMedPubMedCentralGoogle Scholar
  59. Tamura, K., D. Peterson, N. Peterson, G. Stecher, M. Nei & S. Kumar, 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Phylogenetics and Evolution 28: 2731–2739.Google Scholar
  60. Thomaz, A. T., L. R. Malabarba, S. L. Bonatto & L. L. Knowles, 2015. Testing the effect of palaeodrainages versus habitat stability on genetic divergence in riverine systems: study of a Neotropical fish of the Brazilian coastal Atlantic Forest. Journal of Biogeography 42: 2389–2401.CrossRefGoogle Scholar
  61. Tonteri, A., A. J. Veselov, A. V. Zubchenko, J. Lumme & C. R. Primmer, 2009. Microsatellites reveal clear genetic boundaries among Atlantic salmon (Salmo salar) populations from the Barents and White seas, northwest Russia. Canadian Journal of Fisheries and Aquatic Sciences 66: 717–735.CrossRefGoogle Scholar
  62. Voris, H. K., 2000. Maps of Pleistocene sea levels in Southeast Asia: shorelines, river systems and time durations. Journal of Biogeography 27: 1153–1167.CrossRefGoogle Scholar
  63. Wang, J. P., H. D. Lin, S. Huang, C. H. Pan, X. L. Chen & T. Y. Chiang, 2004. Phylogeography of Varicorhinus barbatulus (Cyprinidae) in Taiwan based on nucleotide variation of mtDNA and allozymes. Molecular Phylogenetics and Evolution 31: 1143–1156.CrossRefGoogle Scholar
  64. Waters, J. M. & G. P. Wallis, 2000. Across the Southern Alps by river capture? Freshwater fish phylogeography in South Island, New Zealand. Molecular Ecology 9: 1577–1582.CrossRefGoogle Scholar
  65. Wong, W. Y., K. Y. Ma, L. M. Tsang & K. H. Chu, 2017. Genetic legacy of tertiary climatic change: a case study of two freshwater loaches, Schistura fasciolata and Pseudogastromyzon myersi, in Hong Kong. Heredity 119: 360–370.CrossRefGoogle Scholar
  66. Wu, T. H., 2017. Population genetics of four common indigenous fish species in Hong Kong streams. Ph.D. dissertation, The Chinese University of Hong Kong, Hong Kong.Google Scholar
  67. Wu, T. H., L. M. Tsang, I.-S. Chen & K. H. Chu, 2016. Multilocus approach reveals cryptic lineages in the goby Rhinogobius duospilus in Hong Kong streams: role of paleodrainage systems in shaping marked population differentiation in a city. Molecular Phylogenetics and Evolution 104: 112–122.CrossRefGoogle Scholar
  68. Yan, F., J. Lü, B. Zhang, Z. Yuan, H. Zhao, S. Huang, G. Wei, X. Mi, D. Zou, W. Xu, S. Chen, J. Wang, F. Xie, M. Wu, H. Xiao, Z. Liang, J. Jin, S. Wu, C. Xu, B. Tapley, S. T. Turvey, T. J. Papenfuss, A. A. Cunningham, R. W. Murphy, Y. Zhang & J. Che, 2018. The Chinese giant salamander exemplifies the hidden extinction of cryptic species. Current Biology 18: R590–R592.CrossRefGoogle Scholar
  69. Yule, G. U., 1925. A mathematical theory of evolution, based on the conclusions of Dr J. C. Willis, F.R.S. Phil. Philosophical Transactions of the Royal Society B: Biological Sciences 213: 21–87.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Simon F. S. Li Marine Science Laboratory, School of Life SciencesThe Chinese University of Hong KongShatinHong Kong
  2. 2.Institute of Marine BiologyNational Taiwan Ocean UniversityKeelungTaiwan

Personalised recommendations