, Volume 832, Issue 1, pp 135–151 | Cite as

Complex patterns of genetic and phenotypic divergence in populations of the Lake Malawi cichlid Maylandia zebra

  • Martin HusemannEmail author
  • Michael Tobler
  • Baoqing Ding
  • Rachel Nguyen
  • Cagney McCauley
  • Tyler Pilger
  • Patrick D. Danley


Ecological speciation, which relies heavily on selection driving the emergence of new species, has become the primary paradigm through which rapid species radiations are understood. In this way, selection, particularly ecological selection, is assumed to be the driver of most species radiations. However, in many radiations, such as the radiation of Lake Malawi’s cichlids, the assumption of selection as the driver of speciation has rarely been explicitly tested, and drift, often, has completely been ignored as potential factor. In order to understand the forces driving the divergence of Lake Malawi cichlids at the microevolutionary level, we studied the genetic and phenotypic divergence of ten allopatric populations of Maylandia zebra. We estimated effective population sizes as proxy for drift. Further, we compared neutral genetic differentiation to divergence in three phenotypic traits: body size, body shape, and melanophore counts. We found small, yet significant, population differentiation in all the studied traits across most populations. Population sizes were small rendering the potential for drift to be high. However, phenotypic differentiation exceeded neutral expectations for all traits suggesting divergent local selection. Our data suggest that natural, and potentially also sexual, selection may be the dominant force driving population differentiation in Lake Malawi’s rock-dwelling cichlids, despite the potential for drift in small populations.


Population genetics Ecological selection Sexual selection Radiation Geometric morphometrics Body shape Body size Melanophores 



We wish to thank Richard Zatha, Aimee Howe, and Jason Curole for field assistance. We are grateful to Ming Chen and Aimee Howe, as well as the reviewers for comments on previous versions of the manuscript. Jan C. Habel provided some useful suggestions for the analyses. We are grateful to the officers of Lake Malawi National Park, members of Malawi Fisheries Department, and faculty at the University of Malawi for assistance in conducting the necessary field work. The study was funded by a Jordan Grant from the American Cichlid Association to MH; two Folmar Grants from the Biology Department of Baylor University to MH & BD; and funding from the C. Gus Glasscock, Jr. Endowed Fund for Excellence in Environmental Sciences in the College of Arts and Sciences to MH. This study was further supported by funds to PDD from the Faculty Research Investment Program and the Vice Provost for Research at Baylor University.

Supplementary material

10750_2018_3713_MOESM1_ESM.docx (112 kb)
Supplementary material 1 (DOCX 111 kb)
10750_2018_3713_MOESM2_ESM.docx (40 kb)
Supplementary material 2 (DOCX 39 kb)
10750_2018_3713_MOESM3_ESM.docx (41 kb)
Supplementary material 3 (DOCX 41 kb)
10750_2018_3713_MOESM4_ESM.r (4 kb)
Supplementary material 4 (R 5 kb)
10750_2018_3713_MOESM5_ESM.csv (16 kb)
Supplementary material 5 (CSV 15 kb)
10750_2018_3713_MOESM6_ESM.xls (86 kb)
Supplementary material 6 (XLS 85 kb)
10750_2018_3713_MOESM7_ESM.docx (25 kb)
Supplementary material 7 (DOCX 24 kb)
10750_2018_3713_MOESM8_ESM.docx (14 kb)
Supplementary material 8 (DOCX 13 kb)
10750_2018_3713_MOESM9_ESM.docx (13 kb)
Supplementary material 9 (DOCX 13 kb)
10750_2018_3713_MOESM10_ESM.docx (13 kb)
Supplementary material 10 (DOCX 13 kb)
10750_2018_3713_MOESM11_ESM.docx (14 kb)
Supplementary material 11 (DOCX 13 kb)
10750_2018_3713_MOESM12_ESM.docx (13 kb)
Supplementary material 12 (DOCX 13 kb)
10750_2018_3713_MOESM13_ESM.docx (13 kb)
Supplementary material 13 (DOCX 13 kb)


  1. Abdallah, A. M. & D. R. Barton, 2003. Environmental factors controlling the distributions of benthic invertebrates on rocky shores of Lake Malawi, Africa. Journal of Great Lakes Research 29: 202–215.CrossRefGoogle Scholar
  2. Adams, D. C., F. J. Rohlf & D. E. Slice, 2004. Geometric morphometrics: ten years of progress following the 'revolution'. Italian Journal of Zoology 71: 5–16.CrossRefGoogle Scholar
  3. Albertson, R. C., J. A. Markert, P. D. Danley & T. D. Kocher, 1999. Phylogeny of a rapidly diverging clade: the cichlid fishes of Lake Malawi, East Africa. Proceedings of the National Academy of Sciences 96: 5107–5110.CrossRefGoogle Scholar
  4. Albertson, R. C., J. T. Streelman & T. D. Kocher, 2003. Directional selection has shaped the oral jaws of Lake Malawi cichlid fishes. Proceedings of the National Academy of Sciences 100: 5252–5257.CrossRefGoogle Scholar
  5. Allender, C. J., O. Seehausen, M. E. Knight, G. F. Turner & N. Madean, 2003. Divergent selection during speciation of Lake Malawi cichlid fishes inferred from parallel radiations in nuptial coloration. Proceedings of the National Academy of Sciences 100: 14074–14079.CrossRefGoogle Scholar
  6. Arnegard, M. E., J. A. Markert, P. D. Danley, J. R. Stauffer Jr., A. J. Ambali & T. D. Kocher, 1999. Population structure and colour variation of the cichlid fish Labeotropheus fuelleborni Ahl along a recently formed archipelago of rocky habitat patches in southern Lake Malawi. Proceedings of the Royal Society of London B 266: 119–130.CrossRefGoogle Scholar
  7. Barton, N. H., 1996. Natural selection and random genetic drift as causes of evolution on islands. Philosophical Transactions of the Royal Society of London B 351: 785–795.CrossRefGoogle Scholar
  8. Beerli, P. & M. Palczewski, 2010. Unified framework to evaluate panmixia and migration direction among multiple sampling locations. Genetics 185: 313–326.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Brommer, J. E., 2011. Whither Pst? The approximation of Qst by Pst in evolutionary and conservation biology. Journal of Evolutionary Biology 24: 1160–1168.PubMedCrossRefGoogle Scholar
  10. Chenoweth, S. F. & M. W. Blows, 2008. QST meets the G matrix: the dimensionality of adaptive divergence in multiple correlated quantitative traits. Evolution 62: 1437–1449.PubMedCrossRefGoogle Scholar
  11. Ciccotto, P. J., A. Konings & J. R. Stauffer Jr., 2011. Descriptions of five new species in the genus Metriaclima (Teleostei: Cichlidae) from Lake Malawi, Africa. Zootaxa 2738: 1–25.CrossRefGoogle Scholar
  12. Coombs, J. A., B. H. Letcher & K. H. Nislow, 2008. CREATE: a software to create input files from diploid genotypic data for 52 genetic software programs. Molecular Ecology Resources 8: 578–580.PubMedCrossRefGoogle Scholar
  13. Crawford, N. G., 2010. SMOGD: software for the measurement of genetic diversity. Molecular Ecology Resources 10: 556–557.PubMedCrossRefGoogle Scholar
  14. Danley, P. D., 2001. The ecological, behavioral, and genetic factors influencing the diversification of Lake Malawi’s Rock Dwelling Cichlids. University of New Hampshire, Durham.Google Scholar
  15. Danley, P. D., J. A. Markert, M. E. Arnegard & T. D. Kocher, 2000. Divergence with gene flow in the rock-dwelling cichlids of Lake Malawi. Evolution 54: 1725–1737.PubMedCrossRefGoogle Scholar
  16. Danley, P. D., M. Husemann, B. Ding, D. Peppe, L. DelPietro & E. Beverly, 2012. Palaeoecology of East Africa and the evolution of cichlids. International Journal of Evolutionary Biology 2012: 574851.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Ding, B., J. Curole, M. Husemann & P. D. Danley, 2015. Habitat complexity predicts community diversity of rock-dwelling cichlids in Lake Malawi, East Africa. Hydrobiologia 748: 133–143.CrossRefGoogle Scholar
  18. Drummond, A. J., A. Rambaut, B. Shapiro & O. G. Pybus, 2005. Bayesian coalescent inference of past population dynamics from molecular sequences. Molecular Biology and Evolution 22: 1185–1192.PubMedCrossRefGoogle Scholar
  19. Drummond, A. J., B. Ashton, S. Buxton, M. Cheung, A. Cooper, C. Duran, et al., 2011. Geneious v5.4 [available on internet at].
  20. Crispo, E. & L. J. Chapman, 2009. Temporal variation in population genetic structure of a riverine cichlid fish. Journal of Heredity 101: 97–106.CrossRefGoogle Scholar
  21. Earl, D. A. & B. M. von Holdt, 2012. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics Resources 4: 359–361.CrossRefGoogle Scholar
  22. Edelaar, P., P. Burraco & I. Gomez-Mestre, 2011. Comparisons between QST and FST – how wrong have we been? Molecular Ecology 20: 4830–4839.PubMedCrossRefGoogle Scholar
  23. Evanno, G., S. Regnaut & J. Goudet, 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology 14: 2611–2620.PubMedCrossRefGoogle Scholar
  24. Excoffier, L. & H. E. Lischer, 2010. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources 10: 564–567.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Falush, D., M. Stephens & J. K. Pritchard, 2003. Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164: 1567–1587.PubMedPubMedCentralGoogle Scholar
  26. Francini, P., C. Fruciano, M. L. Spreitzer, J. C. Jones, K. R. Elmer, F. Henning & A. Meyer, 2014. Genomic architecture of ecologically divergent body shape in a pair of sympatric crater lake cichlids. Molecular Ecology 23: 1828–1845.CrossRefGoogle Scholar
  27. Genner, M. J. & G. F. Turner, 2012. Ancient hybridization and phenotypic novelty within Lake Malawi‘s cichlid radiation. Molecular Biology and Evolution 29: 195–206.PubMedCrossRefGoogle Scholar
  28. Genner, M. J., A. Botha & G. F. Turner, 2006. Translocations of rocky habitat cichlid fishes to Nkhata Bay, Lake Malawi. Journal of Fish Biology 69: 622–628.CrossRefGoogle Scholar
  29. Genner, M. J., M. E. Knight, M. P. Haesler & G. F. Turner, 2010. Establishment and expansion of Lake Malawi rock fish populations after a dramatic Late Pleistocene lake level rise. Molecular Ecology 19: 170–182.PubMedCrossRefGoogle Scholar
  30. Glaubrecht, M., 2010. Evolution in Action. Springer, Berlin.CrossRefGoogle Scholar
  31. Goudet, J., 1995. FSTAT (Version 1.2): a computer program to calculate F-statistics. Journal of Heredity 86: 485–486.CrossRefGoogle Scholar
  32. Hangartner, S., A. Laurila & K. Räsänen, 2011. Adaptive divergence in moor frog (Rana arvalis) populations along an acidification gradient: inferences from QST – FST correlations. Evolution 66: 867–881.PubMedCrossRefGoogle Scholar
  33. Hedrick, P. W., 1999. Highly variable loci and their interpretation in evolution and conservation. Evolution 53: 313–318.PubMedCrossRefGoogle Scholar
  34. Hein, J., M. H. Schierup & C. Wiuf, 2005. Gene Genealogies, Variation and Evolution: A Primer in Coalescent Theory. Oxford University Press, Oxford.Google Scholar
  35. Higgins, S. N., H. J. Kling, R. E. Hecky, W. D. Taylor & H. A. Bootsma, 2003. The community composition, distribution, and nutrient status of epilithic periphyton at five rocky littoral zones sites in Lake Malawi, Africa. Journal of Great Lakes Research 29: 181–189.CrossRefGoogle Scholar
  36. Hoeck, P. E. A., J. L. Bollmer, P. G. Parker & L. F. Keller, 2010. Differentiation with drift: a spatio-temporal genetic analysis of Galápagos mockingbird populations. Philosophical Transactions of the Royal Society B 365: 1127–1138.CrossRefGoogle Scholar
  37. Husemann, M., M. Tobler, C. McCauley, B. Ding & P. D. Danley, 2014. Evolution of body shape in differently coloured sympatric congeners and allopatric populations of Lake Malawi’s rock-dwelling cichlids. Journal of Evolutionary Biology 27: 826–839.PubMedCrossRefGoogle Scholar
  38. Husemann, M., R. Nguyen, B. Ding & P. D. Danley, 2015. A genetic demographic analyses of Lake Malawi rock-dwelling cichlids using spatio-temporal sampling. Molecular Ecology 24: 2686–2701.PubMedCrossRefGoogle Scholar
  39. Husemann, M., M. Tobler, C. McCauley, B. Ding & P. D. Danley, 2017. Body shape differences in a pair of closely related Malawi cichlids and their hybrids: effects of genetic variation, phenotypic plasticity, and transgressive segregation. Ecology and Evolution 7: 4336–4346.PubMedPubMedCentralCrossRefGoogle Scholar
  40. Jakobsson, M. & N. A. Rosenberg, 2007. CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23: 1801–1806.PubMedCrossRefGoogle Scholar
  41. Jakobsson, M., M. D. Edge & N. A. Rosenberg, 2013. Relationship between FST and the frequency of the most frequent allele. Genetics 193: 515–528.PubMedPubMedCentralCrossRefGoogle Scholar
  42. Jensen, J. L., A. J. Bohonak & S. T. Kelley, 2005. Isolation by distance, web service. BMC Genetics 6: 13.PubMedPubMedCentralCrossRefGoogle Scholar
  43. Joyce, D. A., D. H. Lunt, R. Bills, G. F. Turner, C. Katongo, N. Duftner, C. Sturmbauer & O. Seehausen, 2005. An extinct cichlid fish radiation emerged in an extinct Pleistocene lake. Nature 435: 90–95.PubMedCrossRefGoogle Scholar
  44. Knight, M. E., M. J. H. van Oppen, H. L. Smith, C. Rico, G. M. Hewitt & G. F. Turner, 1999. Evidence for male-biased dispersal in Lake Malawi cichlids from microsatellites. Molecular Ecology 8: 1521–1527.PubMedCrossRefGoogle Scholar
  45. Koblmüller, S., W. Salzburger, B. Obermüller, E. Eigner, C. Sturmbauer & K. M. Sefc, 2011. Separated by sand, fused by dropping water: habitat barriers and fluctuating water levels steer the evolution of rock-dwelling cichlid populations in Lake Tanganyika. Molecular Ecology 20: 2272–2290.PubMedCrossRefGoogle Scholar
  46. Kocher, T. D., 2004. Adaptive evolution and explosive speciation: the cichlid model. Nature Reviews Genetics 5: 288–298.PubMedCrossRefGoogle Scholar
  47. Lande, R., 1976. Natural selection and random genetic drift in phenotypic evolution. Evolution 30: 314–334.PubMedCrossRefGoogle Scholar
  48. Lande, R., 1992. Neutral theory of quantitative genetic variance in an island model with local extinction and colonization. Evolution 46: 381–389.PubMedCrossRefGoogle Scholar
  49. Langerhans, R. B., 2009. Trade-off between steady and unsteady swimming underlies predator-driven divergence in Gambusia affinis. Journal of Evolutionary Biology 22: 1057–1975.PubMedCrossRefGoogle Scholar
  50. Leinonen, T., J. M. Cano, H. Mäkinen & J. Merilä, 2006. Contrasting patterns of body shape and neutral genetic divergence in marine and lake populations of threespine sticklebacks. Journal of Evolutionary Biology 19: 1803–1812.PubMedCrossRefGoogle Scholar
  51. Leinonen, T., R. B. O’Hara, J. M. Cano & J. Merilä, 2008. Comparative studies of quantitative trait and neutral marker divergence: a meta-analysis. Journal of Evolutionary Biology 21: 1–17.PubMedCrossRefGoogle Scholar
  52. Leinonen, T., R. J. S. McCairns, R. B. O’Hara & J. Merilä, 2013. QST – FST comparisons: evolutionary and ecological insights from genomic heterogeneity. Nature Reviews Genetics 14: 179–190.PubMedCrossRefGoogle Scholar
  53. Librado, P. & J. Rozas, 2009. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25: 1451–1452.PubMedPubMedCentralCrossRefGoogle Scholar
  54. Loh, Y.-H. E., L. S. Katz, M. C. Mims, T. D. Kocher, S. V. Yi & J. T. Streelman, 2008. Comparative analysis reveals signatures of differentiation amid genomic polymorphism in Lake Malawi cichlids. Genome Biology 9: R113.PubMedPubMedCentralCrossRefGoogle Scholar
  55. Magalhaes, I., S. Mwaiko, M. V. Schneider & O. Seehausen, 2009. Divergent selection and phenotypic plasticity during incipient speciation in Lake Victoria cichlid fish. Journal of Evolutionary Biology 22: 260–274.PubMedCrossRefGoogle Scholar
  56. Markert, J. A., M. E. Arnegard, P. D. Danley & T. D. Kocher, 1999. Biogeography and population genetics of the Lake Malawi cichlid Melanochromis auratus: habitat transience, philopatry and speciation. Molecular Ecology 8: 1013–1026.CrossRefGoogle Scholar
  57. McKay, J. K. & G. Latta, 2002. Adaptive population divergence: markers, QTL and traits. Trends in Ecology and Evolution 17: 285–291.CrossRefGoogle Scholar
  58. Merilä, J. & P. Crnokrak, 2001. Comparison of genetic differentiation at marker loci and quantitative traits. Journal of Evolutionary Biology 14: 892–903.CrossRefGoogle Scholar
  59. O’Hara, R. B., 2005. Comparing the effects of genetic drift and fluctuating selection on genotype frequency changes in the scarlet tiger moth. Proceedings of the Royal Society B 272: 211–217.PubMedCrossRefGoogle Scholar
  60. O’Hara, R. B. & J. Merilä, 2005. Bias and precision in Q(ST) estimates: problems and some solutions. Genetics 171: 1331–1339.PubMedPubMedCentralCrossRefGoogle Scholar
  61. O’Quin, C., A. C. Drilea, M. A. Conte & T. D. Kocher, 2012. Mapping of pigmentation QTL on an anchored genome assembly of the cichlid fish, Metriaclima zebra. BMC Genomics 14: 287.CrossRefGoogle Scholar
  62. Ohta, T. & M. Kimura, 1973. A model of mutation appropriate to estimate the number of electrophoretically detectable alleles in a finite population. Genetic Resources 22: 201–204.CrossRefGoogle Scholar
  63. Ovenden, J., D. Peel, R. Street, A. Courtney, S. Hoyle, et al., 2007. The genetic effective and adult census size of an Australian population of tiger prawns (Penaeus esculentus). Molecular Ecology 16: 127–138.PubMedCrossRefGoogle Scholar
  64. Owen, R. B., R. Crossley, T. C. Johnson, D. Tweddle, I. Kornfield, S. Davison, et al., 1990. Major low levels of Lake Malawi and their implications for speciation rates in cichlid fishes. Proceedings of the Royal Society London B 240: 519–553.CrossRefGoogle Scholar
  65. Parnell, N. F. & J. T. Streelman, 2011. The macroecology of rapid evolutionary radiation. Proceedings of the Royal Society B. 278: 2486–2494.PubMedCrossRefGoogle Scholar
  66. Pauers, M. J., 2011. One fish, two fish, red fish, blue fish: geography, ecology, sympatry, and male coloration in the Lake Malawi cichlid genus Labeotropheus (Perciformes: Cichlidae). International Journal of Evolutionary Biology. Article ID 575469.Google Scholar
  67. Posada, D., 2008. jModeltest: phylogenetic model averaging. Molecular Biology and Evolution 25: 1253–1256.PubMedCrossRefGoogle Scholar
  68. Pritchard, J. K., M. Stephens & P. Donelly, 2000. Inference of population structure using multilocus genotype data. Genetics 155: 945–959.PubMedPubMedCentralGoogle Scholar
  69. Rambaut, A. & A. J. Drummond, 2009. Tracer v1.5 [available on internet at].
  70. Raymond, M. & F. Rousset, 1995. GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. Journal of Heredity 86: 248–249.CrossRefGoogle Scholar
  71. Reinthal, P. N., 1990. The feeding habits of a group of herbivorous rock-dwelling cichlid fishes (Cichlidae: Perciformes) from Lake Malawi, Africa. Environmental Biology of Fishes 27: 215–233.CrossRefGoogle Scholar
  72. Ribbink, A. J., B. A. Marsh, A. C. Marsh, A. C. Ribbink & B. J. Sharp, 1983. A preliminary survey of the cichlid fishes of rocky habitats in Lake Malawi. Southern African Journal of Zoology 18: 149–309.CrossRefGoogle Scholar
  73. Rohlf, J. F., 2005. tpsRegr [available on internet at].
  74. Rohlf, J. F., 2006. tpsDig [available on internet at].
  75. Rohlf, J. F., 2007. tpsRelw [available on internet at].
  76. Rosenberg, N. A., 2004. Distruct: a program for the graphical display of population structure. Molecular Ecology Notes 4: 137–138.CrossRefGoogle Scholar
  77. Sæther, S. A., P. Fiske, J. A. Kålås, A. Kuresoo, L. Luigujõe, S. B. Piertney, T. Sahlman & J. Höglund, 2007. Inferring local adaptation from QST – FST comparisons: neutral genetic and quantitative trait variation in European populations of great snipe. Journal of Evolutionary Biology 20: 1563–1576.PubMedCrossRefGoogle Scholar
  78. Salzburger, W., 2009. The interaction of sexually and naturally selected traits in the adaptive radiation of cichlid fishes. Molecular Ecology 18: 169–185.PubMedCrossRefGoogle Scholar
  79. Schluter, D., 1996. Ecological causes of adaptive radiation. The American Naturalist 148: 40–64.CrossRefGoogle Scholar
  80. Schuelke, M., 2000. An economic method for the fluorescent labeling of PCR fragments. Nature Biotechnology 18: 233–234.PubMedCrossRefGoogle Scholar
  81. Smith, P. F. & I. Kornfield, 2002. Phylogeography of Lake Malawi cichlids of the genus Pseudotropheus: significance of allopatric colour variation. Proceedings of the Royal Society of London B 269: 2495–2502.CrossRefGoogle Scholar
  82. Spitze, K., 1993. Population structure in Daphnia obtuse – quantitative genetic and allozymic variation. Genetics 135: 367–374.PubMedPubMedCentralGoogle Scholar
  83. Stauffer, J. R., N. J. Bowers, K. A. Kellogg & K. R. McKaye, 1997. A revision of the Blue-Black Pseudotropheus zebra (Teleostei: Cichlidae) complex from Lake Malawi, Africa, with description of a new genus and ten new species. Proceedings of the Academy of Natural Sciences Philadelphia 148: 189–230.Google Scholar
  84. Stauffer, J. R., K. Black & A. F. Konings, 2013. Descriptions of five new species of Metriaclima (Teleostei: Cichlidae) from Lake Malawi. Zootaxa 3647: 101–136.PubMedCrossRefGoogle Scholar
  85. Streelman, J. T., S. L. Gmyrek, M. R. Kidd, C. Kidd, R. L. Robinson, E. Hert, A. J. Ambali & T. D. Kocher, 2004. Hybridization and contemporary evolution in an introduced cichlid fish from Lake Malawi National Park. Molecular Ecology 13: 2471–2479.PubMedCrossRefGoogle Scholar
  86. Streelman, J. T., R. C. Albertson & T. D. Kocher, 2007. Variation in body size and trophic morphology within and among genetically differentiated populations of the cichlid fish, Metriaclima zebra, from Lake Malawi. Freshwater Biology 52: 525–538.CrossRefGoogle Scholar
  87. Sturmbauer, C., M. Husemann & P. D. Danley, 2011. Explosive speciation and adaptive radiation of East African cichlid fishes. In Zachos, F. E. & J. C. Habel (eds), Biodiversity Hotspots. Springer, Berlin.Google Scholar
  88. Van Oosterhout, C., W. F. Hutchinson, D. P. M. Wills & P. Shipley, 2004. Micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Molecular Ecology Notes 4: 535–538.CrossRefGoogle Scholar
  89. Vokey, J. E. & D. Burton, 1998. Responsiveness to noradrenaline of melanophores associated with cryptic patterning in winter flounder, Pleuronectes americanus, in vitro. Canadian Journal of Zoology 76: 1837–1841.CrossRefGoogle Scholar
  90. Waples, R. S., 1998. Separating the wheat from the chaff: patterns of genetic differentiation in high gene flow species. Journal of Heredity 89: 438–450.CrossRefGoogle Scholar
  91. Weir, B. S. & C. C. Cockerham, 1984. Estimating F-statistics for the analysis of population structure. Evolution 38: 1358–1370.Google Scholar
  92. Whitlock, M. C., 2000. Fixation of new alleles and the extinction of small populations: drift load, beneficial alleles, and sexual selection. Evolution 54: 1855–1861.PubMedCrossRefGoogle Scholar
  93. Won, Y.-J., A. Sivasundar, Y. Wang & J. Hey, 2005. On the origin of Lake Malawi cichlid species: a population genetic analysis of divergence. Proceedings of the National Academy of Sciences 102: 6581–6586.CrossRefGoogle Scholar
  94. Zelditch, M., D. Swiderski, H. Sheets & W. Fink, 2004. Geometric morphometrics for biologists. Elsevier Academic Press, Amsterdam.Google Scholar
  95. Zidana, H., G. F. Turner, C. van Oosterhout & B. Hänfling, 2009. elevated mtDNA diversity in introduced populations of Cynotilapia afra (Günther 1894) in Lake Malawi National Park is evidence for multiple source populations and hybridization. Molecular Ecology 18: 4380–4389.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Biology DepartmentBaylor UniversityWacoUSA
  2. 2.Centrum für Naturkunde (CeNak)University of HamburgHamburgGermany
  3. 3.Division of BiologyKansas State UniversityManhattanUSA
  4. 4.Department of Ecology and Evolutionary BiologyUniversity of ConneticutStorrsUSA
  5. 5.FISHBIOChicoUSA

Personalised recommendations