Skip to main content

Advertisement

Log in

Reducing the deleterious effects of logging on Ephemeroptera communities through reduced impact management

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Reduced impact logging has emerged as one alternative to reduce the effects of timber harvesting. However, the effects of this method on aquatic ecosystems still need to be tested. We studied the effects of logging (reduced-impact logging—RIL and conventional logging methods—CL) on the chemical water quality and physical habitat conditions of streams in eastern Amazonia, as well as on Ephemeroptera diversity. Were analyzed control streams (without logging—CONTROL), streams with RIL and streams with CL, located in the Capim River Basin. Specimens were collected using a dipnet, following a standard protocol and abiotic data were measured with a multiparameter probe. Conventional logging in proximity to streams increased the conductivity and pH of the water, reduced dissolved oxygen and canopy cover of the stream’s channel, altering the composition of Ephemeroptera when compared with CONTROL and RIL areas. We verified that specialist Ephemeroptera species within control environments were replaced by species more tolerant to changes in the natural habitat conditions. In contrast, there was species similarity between RIL and CONTROL streams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Source: Prudente et al. (2017) and Calvão et al. (2016)

Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Allan, J. D. & M. M. Castillo, 2007. Stream Ecology: Structure and Function of Running Waters. Springer Science & Business Media, New York.

    Book  Google Scholar 

  • Anderson, M. J., 2001. A new method for nonparametric multivariate analysis of variance. Austral Ecology 26: 32–46.

    Google Scholar 

  • Baptista, D. F., D. F. Buss, L. F. M. Dorvillé & J. L. Nessimian, 2001. Diversity and habitat preference of aquatic insects along the longitudinal gradient of the Macaé river basin, Rio de Janeiro, Brazil. Revista Brasileira de Biologia 61: 249–258.

    Article  CAS  Google Scholar 

  • Barber-James, H., J. L. Gattolliat, M. Sartori & M. D. Hubbard, 2008. Global diversity of Mayflies (Ephemeroptera, Insecta) in freshwater. Hydrobiologia 595: 339–350.

    Article  Google Scholar 

  • Bauernfeind, E. & O. Moog, 2000. Mayflies (Insecta: Ephemeroptera) and the assessment of ecological integrity: a methodological approach. Hydrobiologia 422: 71–83.

    Article  Google Scholar 

  • Benstead, J. P., M. M. Douglas & C. M. Pringle, 2003. Relationships of stream invertebrate communities to deforestation in eastern Madagascar. Ecological Applications 13: 1473–1490.

    Article  Google Scholar 

  • Blanchet, F. G., P. Legendre & D. Borcard, 2008. Forward selection of explanatory variables. Ecology 89(9): 2623–2632.

    Article  PubMed  Google Scholar 

  • Bleich, M. E., A. F. Mortati, T. André & M. T. F. Piedade, 2016. Structural dynamics of pristine headwater streams from Southern Brazilian Amazon. River Research and Applications 32(3): 473–482.

    Article  Google Scholar 

  • Boltz, F., T. P. Holmes & D. R. Carter, 2003. Economic and environmental impacts of conventional and reduced-impact logging in Tropical South America: a comparative review. Forest Policy and Economics 5(1): 69–81.

    Article  Google Scholar 

  • Borcard, D. & P. Legendre, 2002. All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecological Modelling 153: 51–68.

    Article  Google Scholar 

  • Borcard, D., F. Gillet & P. Legendre, 2011. Numerical Ecology with R. Springer, New York.

    Book  Google Scholar 

  • BRASIL, 2005. Resolução CONAMA 357, de 17 de março de 2005. Conselho Nacional do Meio Ambiente-CONAMA. Available at: http://www.mma.gov.br/port/conama/res/res05/res35705.pdf. Accessed on 8 Oct 2017.

  • Brasil, L. S., J. D. Batista & H. S. R. Cabette, 2013. Effects of environmental factors on community structure of Leptophlebiidae (Insecta, Ephemeroptera) in Cerrado streams, Brazil. Iheringia. Série Zoologia 103: 260–265.

    Article  Google Scholar 

  • Callisto, M., M. Goulart, F. A. R. Barbosa & O. Rocha, 2005. Biodiversity assessment of benthic macroinvertebrates along a reservoir cascade in the lower São Francisco river (northeastern Brazil). Brazilian Journal of Biology 65: 229–240.

    Article  CAS  Google Scholar 

  • Calvão, L. B., D. S. Nogueira, L. F. A. Montag, M. A. Lopes & L. Juen, 2016. Are Odonata communities impacted by conventional or reduced impact logging? Forest Ecology and Management 382: 143–150.

    Article  Google Scholar 

  • Cederberg, C., U. M. Persson, K. Neovius, S. Molander & R. Clift, 2011. Including carbon emissions from deforestation in the carbon footprint of Brazilian beef. Environmental Science & Technology 45: 1773–1779.

    Article  CAS  Google Scholar 

  • Crisci-Bispo, V. L., P. C. Bispo & C. G. Froehlich, 2007. Ephemeroptera, Plecoptera e Trichoptera assemblages in two Atlantic rainforest streams, Southeastern Brazil. Revista Brasileira de Zoologia 24: 312–318.

    Article  Google Scholar 

  • Cummins, K. W., R. W. Merritt & P. C. N. Andrade, 2005. The use of invertebrate functional groups to characterize ecosystem attributes in selected streams and rivers in southeast Brazil. Studies on Neotropical Fauna and Environmental 40: 71–90.

    Article  Google Scholar 

  • Dias, L. G., C. Molineri & P. S. Ferreira, 2007. Ephemerelloidea (Insecta: Ephemeroptera) do Brasil. Papéis Avulsos de Zoologia (São Paulo) 47(19): 213–244.

    Google Scholar 

  • Dias, M. S., W. E. Magnusson & J. Zuanon, 2010. Effects of reduced-impact logging on fish assemblages in a Central Amazonia. Conservation Biology 24: 278–286.

    Article  PubMed  Google Scholar 

  • Dodds, W. K., 2002. Freshwater Ecology: Concepts and Environmental Applications. Aquatic Ecology Series. Academic Press, London.

    Google Scholar 

  • Dominguez, E., C. Molineri, M. L. Pescador, M. D. Hubbard & C. Nieto, 2006. Ephemeroptera of South America. Pensoft Publishers, Sofia.

    Google Scholar 

  • Dray, S., P. Legendre & G. Blanchet, 2011. Pack for: forward Selection with permutation. R package version 0.0e8/r100.

  • Dudgeon, D. & G. Bretschko, 1996. Allochthonous inputs and land-water interactions in seasonal streams: tropical Asia and temperate Europe. In Schiemer, F. & K. T. Boland (eds), Perspectives in Tropical Limnology. SPB Academic Publishing, The Hague: 161–179.

    Google Scholar 

  • Esteves, F. D. A., 2011. Fundamentos de Limnologia, 3rd ed. Interciência, Rio de Janeiro.

    Google Scholar 

  • Fearnside, P. M., 2006. Greenhouse gas emissions from hydroelectric dams: reply to Rosa et al. Climatic Change 75(1–2): 103–109.

    Article  CAS  Google Scholar 

  • Fernandes, J. F., A. L. T. Souza & M. O. Tanaka, 2014. Can the structure of a riparian forest remnant influence stream water quality? A tropical case study. Hydrobiologia 724: 175–185.

    Article  CAS  Google Scholar 

  • Fox, J. & S. Weisberg, 2011. Car: companion to applied regression. Available at: http://CRAN.R-project.org/package=car Accessed 20.

  • Goodland, R., 1995. The concept of environmental sustainability. Annual Review of Ecology and Systematics 26: 1–24.

    Article  Google Scholar 

  • Grönroos, M., J. Heino, T. Siqueira, V. L. Landeiro, J. Ktanen & L. M. Bini, 2013. Metacommunity structuring in stream networks: roles of dispersal mode, distance type, and regional environmental contexto. Ecology and Evolution 3: 4473–4487.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hasegawa, M., M. T. Ito, T. Yoshida, T. Seino, A. Y. C. Chung & K. Kityama, 2014. The effects of reduced-impact logging practices on soil animal communities in the Deramakot Forest Reserve in Borneo. Applied Soil Ecology 83: 13–21.

    Article  Google Scholar 

  • Hirai, E. H., J. O. P. Carvalho & K. A. O. Pinheiro, 2008. Estrutura da população de Maçaranduba (Manilkara huberi Standley) em 84 ha de floresta natural na fazenda Rio Capim, Paragominas, PA. Revista de Ciências Agrárias 49: 65–76.

    Google Scholar 

  • Holmes, T. P., G. M. Blate, J. C. Zweede, Jr. R. Pereira, P. Barreto & F. Boltz, 2002. Custos e benefícios financeiros da exploração florestal de impacto reduzido em comparação à exploração florestal convencional na Amazônia Oriental. Fundação Floresta Tropical/Instituto Florestal Tropical (IFT).

  • Huntingford, C., P. O. Harris, N. Gedney, P. M. Cox, R. A. Betts, J. A. Marengo & J. H. C. Gash, 2004. Using a GCM analogue model to investigate the potential for Amazonian forest dieback. Theoretical and Applied Climatology 78: 177–185.

    Article  Google Scholar 

  • Jackson, J. E., 1991. A User’s Guide to Principal Components. Wiley, New York.

    Book  Google Scholar 

  • Johns, J. S., P. Barreto & C. Uhl, 1996. Logging damage during planned and unplanned logging operations in the eastern Amazon. Forest Ecology and Management 89: 59–77.

    Article  Google Scholar 

  • Jones, C. C., K. McConnell, P. Coleman, P. Cox, P. Faloon, D. Jenkinson & D. Powlson, 2005. Global climate change and soil carbon stocks; predictions from two contrasting models for the turnover of carbon in soils. Global Change Biology 11: 114–166.

    Article  Google Scholar 

  • Jordão, C. P., P. R. S. Ribeiro, A. T. Matos & R. B. A. Fernandes, 2007. Aquatic contamination of the Turvo Limpo river basin at the Minas Gerais state, Brazil. Revista Brasileira de Biologia 18: 116–125.

    Google Scholar 

  • Legendre, P. & L. Legendre, 1998. Numerical Ecology. Second English Edition. Elsevier, Amsterdam.

    Google Scholar 

  • Lenat, D. R. & M. T. Barbour, 1994. Using benthic macroinvertebrate community structure for rapid, cost-effective, water quality monitoring: rapid bioassessment. In Loeb, S. L. & A. Spacie (eds), Biological Monitoring of Aquatic Systems. Lewis Publishers, Boca Raton: 187–215.

    Google Scholar 

  • Miller, R. L., W. L. Bradford & N. E. Peters, 1988. Specific conductance: theoretical considerations and application to analytical quality control. In: US Government Printing Office.

  • Nabout, J. C., T. Siqueira, L. M. Bini & I. D. S. Nogueira, 2009. No evidence for environmental and spatial processes in structuring phytoplankton communities. Acta Oecologica 35(5): 720–726.

    Article  Google Scholar 

  • Nogueira, D. S., L. B. Calvão, L. F. A. Montag, L. Juen & P. De Marco, 2016. Little effects of reduced-impact logging on insect communities in eastern Amazonia. Environmental Monitoring and Assessment 188(7): 1–20.

    Article  Google Scholar 

  • Oksanen, J. et al., 2013. Package ‘vegan’. Community ecology package, version, v. 2, n. 9.

  • Paradis, E., J. Claude & K. Strimmer, 2004. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20: 289–290.

    Article  PubMed  CAS  Google Scholar 

  • Peck, D.V., A. T. Herlihy, B. H. Hill, R. M. Hughes, P. R. Kaufmann, D. J. Klemm, J. M. Lazorchak, F. H. Mccormick, S. A. Peterson, P. L. Ringold, T. Magee & M. R. Cappaert, 2006. Environmental Monitoring and Assessment Program – Surface Waters Western Pilot Study: Field Operations Manual for Wadeable Streams. EPA 600/R-06/003. U.S. Environmental Protection Agency, Office of Research and Development, Washington, DC.

  • Polegatto, C. M. & C. P. Froehlich, 2003. Feeding strategies. In Gaino, E. (ed.), Atalophlebiinae (Ephemeroptera: Leptophlebiidae), with considerations on scraping and filtering. Research Update on Ephemeroptera & Plecoptera. University of Perugia: 55–61.

  • Popielarz, P. A. & Z. P. Neal, 2007. The niche as a theoretical tool. Annual Review of Sociology 33: 65–84.

    Article  Google Scholar 

  • Pringle, C., 2003. What is hydrologic connectivity and why is it ecologically important? Hydrological Processes 17: 2685–2689.

    Article  Google Scholar 

  • Prudente, B. S., P. S. Pompeu, L. Juen & L. F. A. Montag, 2017. Effects of reduced-impact logging on physical habitat and fish assemblages in streams of Eastern Amazonia. Freshwater Biology 62(2): 303–316.

    Article  Google Scholar 

  • Quinn, G. P. & M. J. Keough, 2002. Experimental Design and Data Analysis for Biologists. Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Core Team, R., 2014. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna: 2013.

    Google Scholar 

  • Reid, D. J., J. M. Quinn & A. E. Wright-Stow, 2010. Responses of stream macroinvertebrates communities to progressive forest harvesting: influences of harvest intensity, stream size and riparian buffers. Forest Ecology and Management 260: 1804–1815.

    Article  Google Scholar 

  • Rosenberg, D. M. & V. H. Resh, 1993. Freshwater Biomonitoring and Benthic Macroinvertebrates. Chapman & Hall, New York.

    Google Scholar 

  • Shimano, Y., H. S. Cabette, F. F. Salles & L. Juen, 2010. Composition and distribution of Ephemeroptera (Insecta) in Cerrado-Amazonia transition area, Brazil. Iheringia. Série Zoologia 100(4): 301–308.

    Article  Google Scholar 

  • Shimano, Y. & L. Juen, 2016. How oil palm cultivation is affecting mayfly assemblages in Amazon streams. Annales de Limnologie-International Journal of Limnology 52: 35–45.

    Article  Google Scholar 

  • Shimano, Y., F. F. Salles, L. R. Faria, H. S. Cabette & D. S. Nogueira, 2012. Spatial distribution of trophic guilds and community structure of Ephemeroptera (Insecta) in streams of the Cerrado region in Mato Grosso, Brazil. Iheringia. Série Zoologia 102(2): 187–196.

    Article  Google Scholar 

  • Simpson, G. L., 2012. Permute: Functions for generating restricted permutations of data. R package version 0.7-0 ed.

  • Siqueira, T., L. M. Bini, M. V. Cianciaruso, F. O. Roque & S. Trivinho-Strixino, 2009. The role of niche measures in explaining the abundance–distribution relationship in tropical lotic chironomids. Hydrobiologia 636(1): 163.

    Article  Google Scholar 

  • Sist, P. & F. N. Ferreira, 2007. Sustainability of reduced-impact logging in the Eastern Amazon. Forest Ecology and Management 243: 199–209.

    Article  Google Scholar 

  • Southwood, T. R. E., 1977. Habitat, the templet for ecological strategies? Journal Animal Ecology 46: 337–365.

    Article  Google Scholar 

  • Sparovek, G., A. Barretto, I. Klug, L. Papp & J. Lino, 2011. A revisão do Código Florestal brasileiro. Novos Estudos – CEBRAP, Fonte: 111–135.

    Google Scholar 

  • Superintendência do Desenvolvimento da Amazônia (SUDAM), 1993. Plano de Desenvolvimento da Amazônia 1994/1997. SUDAM, Belém.

    Google Scholar 

  • Tritsch, I., P. Sist, I. S. Narvaes, L. Mazzei, L. Blanc, C. Bourgoin, G. Cornu & V. Gond, 2016. Multiple patterns of forest disturbance and logging shape forest landscapes in Paragominas, Brazil. Forests 7(12): 315.

    Article  Google Scholar 

  • Uhl, C., P. Barreto, A. Veríssimo, E. Vidal, P. Amaral, A. C. Barros, C. Jr, J. Johns Souza & J. Gerwing, 1997. Natural resource management in the Brazilian Amazon: an integrated research approach. BioScience 47: 160–199.

    Article  Google Scholar 

  • Vellend, M., 2010. Conceptual synthesis in community ecology. The Quarterly Review of Biology 85(2): 183–206.

    Article  PubMed  Google Scholar 

  • Venables, W. N. & B. D. Ripley, 2002. Modern Applied Statistics with S, 4th ed. Springer, New York. ISBN 0-387-95457-0.

    Book  Google Scholar 

  • Von Sperling, M., 2017. Wastewater Characteristics, Treatment and Disposal. IWA Publishing, London.

    Google Scholar 

  • Whitmore, T. C., 1990. An Introduction to Tropical Rain Forests. Oxford University Press, Oxford.

    Google Scholar 

  • Wilks, S. S., 1932. Certain Generalizations in the Analysis of Variance. Biometrika, Cambridge 24: 471–494.

    Article  Google Scholar 

  • Yoshimura, M., 2012. Effects of forest disturbances on aquatic insect assemblages. Entomological Science 15: 145–154.

    Article  Google Scholar 

  • Zaiha, A. N., M. M. Ismid & M. S. Azri, 2015. Effects of logging activities on ecological water quality indicators in the Berasau River, Johor, Malaysia. Environmental Monitoring and Assessment 187: 493.

    Article  Google Scholar 

  • Zarin, D. J., M. D. Schulze, E. Vidal & M. Lentini, 2007. Beyond reaping the first harvest: management objectives for timber production in the Brazilian Amazon. Conservation Biology 21: 916–925.

    Article  PubMed  Google Scholar 

  • Zar, J. H., 2010. Biostatistical Analysis. Prentice-Hall/Pearson, Upper Saddle River: 944.

    Google Scholar 

  • Zeni, J. O. & L. Casatti, 2014. The influence of habitat homogenization on the trophic structure of fish fauna in tropical streams. Hydrobiologia 726: 259–270.

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank 33 Forest and CIKEL LTDA and Instituto de Florestas Tropicais (IFT) for their logistical support. The Conselho Nacional de Desenvolvimento Científico e Tecnológico for financing the project entitled “Tempo de resiliência das comunidades aquáticas após o corte seletivo de madeira na Amazônia Oriental” by Universal notice 14/2011, process 481015/2011-6 and for the productivity grant to LFAM (process: 305017/2016-0) and LJ (process: 307597/2016-4). LFAM was funded by the Cooordenação de Aperfeiçoamento de Pessoal do Nível Superior (CAPES) (process 88881.119097/2016-01). We would also like to thank the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior for the Master’s scholarship to MC and the Doctorate scholarship to LBC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mylena Neves Cardoso.

Additional information

Handling editor: Marcelo S. Moretti

Electronic supplementary material

Below is the link to the electronic supplementary material.

10750_2018_3705_MOESM1_ESM.tif

Supplementary material 1 Fig. 1 Vectors obtained in Coordinates analysis of Neighbor Matrices (PCNM). Vector 1 related to community, vectors 1, 3 and 6 to abundance, and vector 3 to richness (TIFF 6889 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cardoso, M.N., Calvão, L.B., de Assis Montag, L.F. et al. Reducing the deleterious effects of logging on Ephemeroptera communities through reduced impact management. Hydrobiologia 823, 191–203 (2018). https://doi.org/10.1007/s10750-018-3705-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-018-3705-x

Keywords

Navigation