, Volume 823, Issue 1, pp 27–38 | Cite as

Dynamics in the effects of the species–area relationship versus local environmental factors in bomb crater ponds

  • Eszter Á. Krasznai-KEmail author
  • Pál Boda
  • Gábor Borics
  • Balázs A. Lukács
  • Gábor Várbíró
Primary Research Paper


The species–area relationship (SAR) is a well-investigated subject raising questions nonetheless. We hypothesized that SAR can be modified by naturally extreme conditions (high pH, conductivity, and total phosphorus) in a small spatial scale. A bombing range was chosen as a sampling location with a densely scattered cluster of bomb crater ponds, which vary in size and in extremity to study the hypothesis. Macroinvertebrate communities from 25 bomb crater ponds were sampled, along with the macrophyte community, while pH, conductivity, total phosphorus, and area were also registered. A decision tree was used to separate extreme from normal ponds based on their chemical characteristics. SAR was found to be the dominant driving force, increasing species richness in the extreme ponds. However, in the normal ponds, the small island effect was observed. The macroinvertebrate communities and macrophyte community types are congruent in normal ponds. Our findings imply that rules in ecology cannot be handled rigidly and there are dynamics existing between the factors that influence the composition of a macroinvertebrate community that cannot be ignored at habitat restorations.


Habitat diversity Ponds Macroinvertebrates Naturally extreme environment Species accumulation curves 



Thanks are due to Csaba Deák for the identification of multiple taxa. The authors would also like to say thanks to the anonymous Reviewers for the effort they put into improving the manuscript and Joan Mattia for the linguistic help. This work was funded by the GINOP-2.3.2-15-2016-00019, OTKA K104279, PD120775 Grants. Balázs András Lukács was supported by the Bolyai János Research Scholarship of the Hungarian Academy of Sciences.

Supplementary material

10750_2018_3693_MOESM1_ESM.docx (13 kb)
Supplementary material 1 (DOCX 13 kb)
10750_2018_3693_MOESM2_ESM.docx (12 kb)
Supplementary material 2 (DOCX 12 kb)


  1. Askew, R. R., 1988. The dragonflies of Europe. Harley books, Milwaukee.Google Scholar
  2. Backus-Freer, J. & M. Pyron, 2015. Concordance among fish and macroinvertebrate assemblages in streams of Indiana, USA. Hydrobiologia 758: 141–150.CrossRefGoogle Scholar
  3. Báldi, A., 2008. Habitat heterogeneity overrides the species–area relationship. Journal of Biogeography 35: 675–681.CrossRefGoogle Scholar
  4. Bauernfeind, E. & U. H. Humpesch, 2001. Die eintagsfliegen Zentraleuropas (Insecta: Ephemeroptera): bestimmung und ökologie. Verlag des Naturhistorischen Museums.Google Scholar
  5. Bilton, D. T., J. R. Freeland & B. Okamura, 2001. Dispersal in freshwater invertebrates. Annual Review of Ecology and Systematics 32: 159–181.CrossRefGoogle Scholar
  6. Boda, P., T. Bozóki, T. Vásárhelyi, G. Bakonyi & G. Várbíró, 2015. Revised and annotated checklist of aquatic and semi-aquatic Heteroptera of Hungary with comments on biodiversity patterns. ZooKeys 501: 89–108.CrossRefGoogle Scholar
  7. Boix, D., J. Sala & R. Moreno-Amich, 2001. The faunal composition of Espolla pond (NE Iberian peninsula): the neglected biodiversity of temporary waters. Wetlands 21: 577–592.CrossRefGoogle Scholar
  8. Bornette, G. & S. Puijalon, 2011. Response of aquatic plants to abiotic factors: a review. Aquatic Sciences 73: 1–14.CrossRefGoogle Scholar
  9. Breiman, L., J. Friedman, C. J. Stone & R. A. Olshen, 1984. Classification and regression trees. CRC Press, Boca Raton.Google Scholar
  10. Brown, J. H. & M. V. Lomolino, 2000. Concluding remarks: historical perspective and the future of island biogeography theory. Global Ecology and Biogeography 9: 87–92.CrossRefGoogle Scholar
  11. Cham, S., 2009. Field guide to the larvae and exuviae of British dragonflies, Damselflies (Zygoptera), Vol. 2. British Dragonfly Society, Peterborough.Google Scholar
  12. Chapman, H. H. & P. C. Pratt, 1961. Methods of Analysis for Soils. Division of Agricultural Science, University of California, Davis, CA.Google Scholar
  13. Coleman, B. D., M. A. Mares, M. R. Willig & Y. H. Hsieh, 1982. Randomness, area, and species richness. Ecology 63: 1121–1133.CrossRefGoogle Scholar
  14. Csabai, Z. 2000. Vízibogarak kishatározója I. (Coleoptera: Haliplidae, Hygrobiidae, Dytiscidae, Noteridae, Gyrinidae). Vízi Természet-& Környezetvédelem, 15. (In Hungarian).Google Scholar
  15. Csabai, Z., Z. Gidó & G. Szél, 2002. Vízibogarak kishatározója II. (Coleoptera: Georissidae, Spercheidae, Hydrochidae, Helophoridae, Hydrophilidae). Vízi Természet -& Környezetvédelem, 16. (In Hungarian).Google Scholar
  16. Csabai, Z., P. Boda, B. Bernáth, G. Kriska & g Horváth, 2006. A ‘polarisation sun-dial’dictates the optimal time of day for dispersal by flying aquatic insects. Freshwater Biology 51: 1341–1350.CrossRefGoogle Scholar
  17. De Meester, L., S. Declerck, R. Stoks, G. Louette, F. Van De Meutter, T. De Bie, E. Michels & L. Brendonck, 2005. Ponds and pools as model systems in conservation biology, ecology and evolutionary biology. Aquatic Conservation: Marine and Freshwater Ecosystems 15: 715–725.CrossRefGoogle Scholar
  18. Dunlop, J. E., N. Horrigan, G. McGregor, B. J. Kefford, S. Choy & R. Prasad, 2008. Effect of spatial variation on salinity tolerance of macroinvertebrates in Eastern Australia and implications for ecosystem protection trigger values. Environmental Pollution 151: 621–630.CrossRefPubMedGoogle Scholar
  19. Eiseler, B., 2005. Bestimmungsschlüssel für die Eintagsfliegenlarven der deutschen Mittelgebirge und des Tieflandes. Dinkelscherben 53: 1–112.Google Scholar
  20. Gerken, B. & K. Sternberg, 1999. Die Exuvien europaischer Libellen (Insecta, Odonata). Huxaria Druckerei.Google Scholar
  21. Glöer, P. & C. Meier-Brook, 1998. Süßwassermollusken. Ein Bestimmungsschlüssel für die Bundesrepublik Deutschland. Deutscher Jugendbund für Naturbeobachtung, Hamburg.Google Scholar
  22. Godunko, R. J., M. Kłonowska-Olejnik & T. Soldán, 2004. Ecdyonurus rizuni sp. nov. (Ephemeroptera: Heptageniidae) from the Eastern Carpathians. Museum and Institute of Zoology, Polish Academy of Sciences. Annales Zoologici 54: 519–524.Google Scholar
  23. Gong, Z. & P. Xie, 2001. Impact of eutrophication on biodiversity of the macrozoobenthos community in a Chinese shallow lake. Journal of Freshwater Ecology 16: 171–178.CrossRefGoogle Scholar
  24. Grüner, H. E., 1966. Krebstiere oder Crustacea. V. Isopoda. Die Tierwelt Deutschlands.Google Scholar
  25. Hammer, H., D. A. T. A. R. Harper & P. D. Ryan, 2001. PAST: Paleontological Statistics software package for education and data analysis. Palaeontologia Electronica 4: 9.Google Scholar
  26. Hanson, M. A., C. A. Buelt, K. D. Zimmer, B. R. Herwig, S. Bowe & K. Maurer, 2015. Co-correspondence among aquatic invertebrates, fish, and submerged aquatic plants in shallow lakes. Freshwater Science 34: 953–964.CrossRefGoogle Scholar
  27. Haybach, A., 1999. Contribution to larval taxonomy of Ecdyonurus venosus. Group in Germany. Lauterbornia 37: 113–150.Google Scholar
  28. Herrmann, J., E. Degerman, A. Gerhardt, C. Johansson & I. Muniz, 1993. Acid-stress effect on stream biology. Ambio (Sweden) 22: 298–307.Google Scholar
  29. Hill, J. K., K. C. Hamer, L. A. Lace & W. M. T. Banham, 1995. Effects of selective logging on tropical forest butterflies on Buru, Indonesia. Journal of Applied Ecology 1: 754–760.CrossRefGoogle Scholar
  30. Horrigan, N., J. E. Dunlop, B. J. Kefford & F. Zavahir, 2007. Acute toxicity largely reflects the salinity sensitivity of stream macroinvertebrates derived using field distributions. Marine and Freshwater Research 58: 178–186.CrossRefGoogle Scholar
  31. Hubbell, S. P., 2001. The unified theory of biogeography and biodiversity. Princeton University Press, Princeton.Google Scholar
  32. Hurd, L. E. & W. F. Fagan, 1992. Cursorial spiders and succession: age or habitat structure? Oecologia 92: 215–221.CrossRefPubMedGoogle Scholar
  33. Karaman, G. S. & S. Pinkster, 1977. Freshwater gammarus species from Europe, North Africa and adjacent regions of Asia (Crustacea-Amphipoda). Commissie voor de artis bibliotheek 47: 165–196.Google Scholar
  34. Kefford, B. J., 1998. The relationship between electrical conductivity and selected macroinvertebrate communities in four river systems of south-west Victoria, Australia. International Journal of Salt Lake Research 7: 153–170.Google Scholar
  35. Kefford, B. J., D. Nugegoda, L. Metzeling & E. J. Fields, 2006. Validating species sensitivity distributions using salinity tolerance of riverine macroinvertebrates in the southern Murray-Darling Basin (Victoria, Australia). Canadian Journal of Fisheries and Aquatic Sciences 63: 1865–1877.CrossRefGoogle Scholar
  36. Kerr, J. T. & L. Packer, 1997. Habitat heterogeneity as a determinant of mammal species richness in high-energy regions. Nature 385: 252–254.CrossRefGoogle Scholar
  37. Koch, K., H. Freude, K. W. Harde, G. A. Lohse & W. Lucht, 1989. Die Käfer mitteleuropas. Goecke & Evers; G. FischerGoogle Scholar
  38. Kontschán, J., 2001. Proasellus pribenicensis Flasarova, 1977. (Crustacea: Isopoda, Asellota), a magyar faunára új víziászka a Cserehátból. (The first Hungarian record of Proasellus pribenicensis Flasarova, 1977.). Folia Entomologica Hungarica 62: 319–320 (In Hungarian).Google Scholar
  39. Kontschán, J., I. B. Muskó & D. Murányi, 2002. A felszíni vizekben elõforduló felemáslábú rákok (Crustacea: Amphipoda) rövid határozója & elõfordulásuk Magyarországon. (Identification and checklist of amphipods (Crustacea: Amphipoda) of the surface waters of Hungary). Folia Historico-Naturalia Musei Matraensis 26: 151–157 (In Hungarian).Google Scholar
  40. Lomolino, M. V., 2000. Ecology’s most general, yet protean pattern: the species-area relationship. Journal of Biogeography 27: 17–26.CrossRefGoogle Scholar
  41. Lomolino, M. V. & M. D. Weiser, 2001. Towards a more general species-area relationship: diversity on all islands, great and small. Journal of Biogeography 28: 431–445.CrossRefGoogle Scholar
  42. Lukács, B. A., B. Tóthmérész, G. Borics, G. Várbíró, P. Juhász, B. Kiss, Z. Müller, G. László & T. Erős, 2015. Macrophyte diversity of lakes in the Pannon Ecoregion (Hungary). Limnologica-Ecology and Management of Inland Waters 53: 74–83.CrossRefGoogle Scholar
  43. Molnár, Z. & A. Borhidi, 2003. Hungarian alkali vegetation: Origins, landscape history, syntaxonomy, conservation. Phytocoenologia 33: 377–408.CrossRefGoogle Scholar
  44. Mulholland, P. J., C. T. Driscoll, J. W. Elwood, M. P. Osgood, A. V. Palumbo, A. D. Rosemond & C. Schofield, 1992. Relationships between stream acidity and bacteria, macroinvertebrates, and fish: a comparison of north temperate and south temperate mountain streams, USA. Hydrobiologia 239: 7–24.CrossRefGoogle Scholar
  45. Niesemann, H., 1997. Egel und Krebsegel Österreichs. Sonderheft der Ersten Voralberger Malakologischen Gesellschaft, Rankweil.Google Scholar
  46. Oertli, B., D. A. Joye, E. Castella, R. Juge, D. Cambin & J. B. Lachavanne, 2002. Does size matter? The relationship between pond area and biodiversity. Biological Conservation 104: 59–70.CrossRefGoogle Scholar
  47. Oertli, B., R. Céréghino, A. Hull & R. Miracle, 2009. Pond conservation: from science to practice. Hydrobiologia 634: 1–9.CrossRefGoogle Scholar
  48. Palmgren, P., 1930. Quantitative Untersuchungen ueber die Vogelfauna in den Waeldern Suedfinnlands: mit besonderer Beruecksichtigung Aalands. Acta Zoologica Fennica 7: 173–175.Google Scholar
  49. Parr, L. B., R. G. Perkins & C. F. Mason, 2002. Reduction in photosynthetic efficiency of Cladophora glomerata, induced by overlying canopies of Lemna spp. Water Research 36: 1735–1742.CrossRefPubMedGoogle Scholar
  50. Pintér, L., A. Richnovszky & A. Szigethy, 1979. Distribution of the recent Mollusca of Hungary. Soosiana 7: 1–351.Google Scholar
  51. Piscart, C., J. C. Moreteau & J. N. Beisel, 2005. Biodiversity and structure of macroinvertebrate communities along a small permanent salinity gradient (Meurthe River, France). Hydrobiologia 551: 227–236.CrossRefGoogle Scholar
  52. Preston, F. W., 1960. Time and space and the variation of species. Ecology 41: 611–627.CrossRefGoogle Scholar
  53. Ricklefs, R. E. & I. J. Lovette, 1999. The roles of island area per se and habitat diversity in the species–area relationships of four Lesser Antillean faunal groups. Journal of Animal Ecology 68: 1142–1160.CrossRefGoogle Scholar
  54. Rosenzweig, M. L., 1995. Species diversity in space and time. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  55. Savage, A. A., 1989. Adults of the British aquatic Hemiptera Heteroptera: a key with ecological notes. Freshwater Biological Association. 50: 173.Google Scholar
  56. Scheffer, M., G. J. van Geest, K. Zimmer, E. Jeppesen, M. Søndergaard, M. G. Butler, M. A. Hanson, S. Declerck & L. De Meester, 2006. Small habitat size and isolation can promote species richness: second-order effects on biodiversity in shallow lakes and ponds. Oikos 112: 227–231.CrossRefGoogle Scholar
  57. Sfenthourakis, S. & K. A. Triantis, 2009. Habitat diversity, ecological requirements of species and the Small Island Effect. Diversity and Distributions 15: 131–140.CrossRefGoogle Scholar
  58. Shmida, A. V. I. & M. V. Wilson, 1985. Biological determinants of species diversity. Journal of Biogeography 1: 1–20.CrossRefGoogle Scholar
  59. Šmilauer, P. & J. Lepš, 2014. Multivariate analysis of ecological data using CANOCO 5. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  60. Stoner, A. W. & F. G. Lewis, 1985. The influence of quantitative and qualitative aspects of habitat complexity in tropical sea-grass meadows. Journal of Experimental Marine Biology and Ecology 94: 19–40.CrossRefGoogle Scholar
  61. Svitok, M., M. Novikmec, P. Bitušík, B. Máša, J. Oboňa, M. Očadlík & E. Michalková, 2014. Benthic communities of low-order streams affected by acid mine drainages: a case study from central Europe. Water 6: 1312–1338.CrossRefGoogle Scholar
  62. Tachet, H., P. Richoux, M. Bournaud & P. Usseglio-Polatera, 2010. Invertébr& d’eau douce. Systématique, Biologie, Écologie. Paris, France: CNRS Éditions (in French)Google Scholar
  63. Ter Braak, C. J. F. & P. Šmilauer, 2012. Canoco reference manual and user’s guide: software for ordination, version 5. 0. Microcomputer Power, Ithaca, USA.Google Scholar
  64. Tews, J., U. Brose, V. Grimm, K. Tielbörger, M. C. Wichmann, M. Schwager & F. Jeltsch, 2004. Animal species diversity driven by habitat heterogeneity/diversity: the importance of keystone structures. Journal of Biogeography 31: 79–92.CrossRefGoogle Scholar
  65. Theel, H. J., E. D. Dibble & J. D. Madsen, 2008. Differential influence of a monotypic and diverse native aquatic plant bed on a macroinvertebrate assemblage; an experimental implication of exotic plant induced habitat. Hydrobiologia 600: 77–87.CrossRefGoogle Scholar
  66. Therneau, T., B. Atkinson, B. Ripley & M. B. Ripley, 2017. Package ‘rpart’. [available on internet at]. Accessed 20 April 2016.
  67. Török, P., I. Kapocsi & B. Deák, 2012. Conservation and management of alkali grassland biodiversity in Central-Europe. Grasslands: Types, Biodiversity and Impacts 1: 109–118.Google Scholar
  68. Vadstrup, M. & T. V. Madsen, 1995. Growth limitation of submerged aquatic macrophytes by inorganic carbon. Freshwater Biology 34: 411–419.CrossRefGoogle Scholar
  69. Van de Meutter, F., H. Trekels, A. J. Green & R. Stoks, 2010. Is salinity tolerance the key to success for the invasive water bug Trichocorixa verticalis? Hydrobiologia 649: 231–238.CrossRefGoogle Scholar
  70. Warfe, D. M. & L. A. Barmuta, 2004. Habitat structural complexity mediates the foraging success of multiple predator species. Oecologia 141: 171–178.CrossRefPubMedGoogle Scholar
  71. Warfe, D. M. & L. A. Barmuta, 2006. Habitat structural complexity mediates food web dynamics in a freshwater macrophyte community. Oecologia 150: 141–154.CrossRefPubMedGoogle Scholar
  72. Waringer, J. & W. Graf, 1997. Atlas der Österreichischen Köcherfliegenlarven: unter Einschluss der angrenzenden Gebiete. Facultas Universitatsverlag.Google Scholar
  73. Wickham, H., 2011. ggplot2. Wiley Interdisciplinary Reviews: Computational Statistics 3: 180–185.CrossRefGoogle Scholar
  74. Wollmann, K., 2000. Corixidae (Hemiptera, Heteroptera) in acidic mining lakes with pH ≤ 3 in Lusatia, Germany. Hydrobiologia 433: 181–183.CrossRefGoogle Scholar
  75. Wolters, J. W., R. C. Verdonschot, J. Schoelynck, P. F. Verdonschot & P. Meire, 2017. The role of macrophyte structural complexity and water flow velocity in determining the epiphytic macroinvertebrate community composition in a lowland stream. Hydrobiologia. Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Eszter Á. Krasznai-K
    • 1
    • 2
    Email author
  • Pál Boda
    • 2
    • 3
  • Gábor Borics
    • 2
    • 3
  • Balázs A. Lukács
    • 2
  • Gábor Várbíró
    • 2
    • 3
  1. 1.Department of LimnologyUniversity of PannoniaVeszprémHungary
  2. 2.Department of Tisza River Research, MTA Centre for Ecological ResearchDanube Research InstituteDebrecenHungary
  3. 3.GINOP Sustainable Ecosystems GroupMTA Centre for Ecological ResearchTihanyHungary

Personalised recommendations