, Volume 832, Issue 1, pp 9–37 | Cite as

Gondwanan vicariance or trans-Atlantic dispersal of cichlid fishes: a review of the molecular evidence

  • Michael MatschinerEmail author


Cichlid fishes are one of the most important model systems for evolutionary biology. Unfortunately, however, the timeline of cichlid diversification is still insufficiently known and limits our understanding of the mechanisms that generated their spectacular diversity. The uncertainty regarding this timeline stems from a decades-old controversy surrounding the phylogeographic history of cichlid fishes. Did cichlid subfamilies diversify as the result of Gondwanan vicariance, as supported by their distribution on former Gondwanan landmasses? Or did they diverge much more recently through oceanic dispersal, as suggested by the fossil record? While a large number of studies have already addressed this question with molecular-clock analyses, no single conclusion has emerged from these investigations. Here, I review the molecular evidence for Gondwanan vicariance or trans-Atlantic dispersal resulting from these studies. I discuss the weaknesses and strengths of each study, aiming to promote the formation of consensus on the matter and to prevent the repetition of previously made mistakes. I find that after accounting for inappropriate calibration strategies and saturation in mitochondrial datasets, the molecular evidence points to trans-Atlantic dispersal long after continental separation, probably around 75–60 Ma.


Cichlidae Biogeography Dispersal Vicariance Phylogeny Bayesian inference Divergence-time estimation Fossils 



I am thankful to Adrian Indermaur for help with the illustration of cichlid distributions, and to all participants of the Cichlid Science 2017 meeting for interesting discussions. I further thank Alison Murray and Francesco Santini for advice on fossil constraints and Francesco Santini also for providing information about the dataset used in Santini et al. (2009). Yoshinori Kumazawa, Martin Genner, and Ricardo Betancur-R also provided information about the datasets used in Kumazawa et al. (2000), Genner et al. (2007), and Betancur-R et al. (2013), respectively, for which I am thankful. In addition, I thank Julia Barth, Zuzana Musilova, and Milan Malinsky, as well as Alessio Capobianco and one anonymous reviewer for valuable comments that helped to improve the manuscript. Finally, I thank the Editors of the Special Issue Cichlid III for handling my manuscript. My work was supported by funding from the European Research Council (CoG “CICHLID\(\sim\)X”) awarded to Walter Salzburger.


  1. Alfaro, M. E., F. Santini, C. D. Brock, H. Alamillo, A. Dornburg, D. L. Rabosky, G. Carnevale & L. J. Harmon, 2009. Nine exceptional radiations plus high turnover explain species diversity in jawed vertebrates. Proceedings of the National Academy of Sciences USA 106: 13410–13414.CrossRefGoogle Scholar
  2. Alfaro, M. E., B. C. Faircloth, R. C. Harrington, L. Sorenson, M. Friedman, C. E. Thacker, C. H. Oliveros, D. Cerny & T. J. Near, 2018. Explosive diversification of marine fishes at the Cretaceous–Palaeogene boundary. Nature Ecology & Evolution 2: 688–696.CrossRefGoogle Scholar
  3. Ali, J. R. & J. C. Aitchison, 2008. Gondwana to Asia: Plate tectonics, paleogeography and the biological connectivity of the Indian sub-continent from the Middle Jurassic through latest Eocene (166–35 Ma). Earth-Science Reviews 88: 145–166.CrossRefGoogle Scholar
  4. Ali, J. R. & D. W. Krause, 2011. Late Cretaceous bioconnections between Indo-Madagascar and Antarctica: refutation of the Gunnerus Ridge causeway hypothesis. Journal of Biogeography 38: 1855–1872.CrossRefGoogle Scholar
  5. Altschul, S. F., W. Gish, W. Miller, E. W. Myers & D. J. Lipman, 1990. Basic local alignment search tool. Journal of Molecular Biology 215: 403–410.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Arratia, G., 1997. Basal teleosts and teleostean phylogeny. Palaeo Ichthyologica 7: 5–168.Google Scholar
  7. Avella, M., J. Berhaut & M. Bornancin, 1993. Salinity tolerances of two tropical fishes, Oreochromis aureus and O. niloticus. 1. Biochemical and morphological changes in the gill epithelium. Journal of Fish Biology 42: 243–254.CrossRefGoogle Scholar
  8. Azuma, Y., Y. Kumazawa, M. Miya, K. Mabuchi & M. Nishida, 2008. Mitogenomic evaluation of the historical biogeography of cichlids toward reliable dating of teleostean divergences. BMC Evolutionary Biology 8: 215.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Bacon, C. D., D. Silvestro, C. A. Jaramillo, B. T. Smith, P. Chakrabarty & A. Antonelli, 2015. Biological evidence supports an early and complex emergence of the Isthmus of Panama. Proceedings of the National Academy of Sciences USA 112: 6110–6115.CrossRefGoogle Scholar
  10. Baldo, L., M. E. Santos & W. Salzburger, 2011. Comparative transcriptomics of Eastern African cichlid fishes shows signs of positive selection and a large contribution of untranslated regions to genetic diversity. Genome Biology and Evolution 3: 443–455.PubMedCrossRefPubMedCentralGoogle Scholar
  11. Battistuzzi, F. U., P. Billing-Ross, A. Paliwal & S. Kumar, 2011. Fast and slow implementations of relaxed-clock methods show similar patterns of accuracy in estimating divergence times. Molecular Biology and Evolution 28: 2439–2442.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Battistuzzi, F. U., Q. Tao, L. Jones, K. Tamura & S. Kumar, 2018. RelTime relaxes the strict molecular clock throughout the phylogeny. Genome Biology and Evolution 10: 1632–1636.CrossRefGoogle Scholar
  13. Bellosi, E. S. & J. M. Krause, 2014. Onset of the Middle Eocene global cooling and expansion of open-vegetation habitats in central Patagonia. Andean Geology 41: 29–48.CrossRefGoogle Scholar
  14. Benton, M. & P. Donoghue, 2007. Paleontological evidence to date the tree of life. Molecular Biology and Evolution 24: 26–53.PubMedCrossRefPubMedCentralGoogle Scholar
  15. Benton, M. J., M. J. Donoghue, R. J. Asher, M. Friedman, T. J. Near & J. Vinther, 2015. Constraints on the timescale of animal evolutionary history. Palaeontologia Electronica 18.1.1FC: 1–106.Google Scholar
  16. Berner, D. & W. Salzburger, 2015. The genomics of organismal diversification illuminated by adaptive radiations. Trends in Genetics 31: 491–499.PubMedCrossRefPubMedCentralGoogle Scholar
  17. Betancur-R, R., R. E. Broughton, E. O. Wiley, K. E. Carpenter, J. A. Lopez, C. Li, N. I. Holcroft, D. Arcila, M. D. Sanciangco, J. C. Cureton, F. Zhang, T. Buser, M. A. Campbell, J. A. Ballesteros, A. Roa-Varon, S. C. Willis, W. C. Borden, T. Rowley, P. C. Reneau, D. J. Hough, G. Lu, T. Grande, G. Arratia & G. Ortí, 2013. The Tree of Life and a new classification of bony fishes. Tree of Life, PLOS Currents: 1–45.Google Scholar
  18. Betancur-R, R., E. O. Wiley, G. Arratia, A. Acero, N. Bailly, M. Miya, G. Lecointre & G. Ortí, 2017. Phylogenetic classification of bony fishes. BMC Evolutionary Biology 17: 162.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Bouckaert, R. R., J. Heled, D. Kühnert, T. Vaughan, C.-H. Wu, D. Xie, M. A. Suchard, A. Rambaut & A. J. Drummond, 2014. BEAST 2: a software platform for Bayesian evolutionary analysis. PLOS Computational Biology 10(e1003): 537.Google Scholar
  20. Bowen, B. W., A. L. Bass, L. A. Rocha, W. S. Grant & D. R. Robertson, 2001. Phylogeography of the trumpetfishes (Aulostomus): ring species complex on a global scale. Evolution 55: 1029–1039.PubMedCrossRefPubMedCentralGoogle Scholar
  21. Brawand, D., C. E. Wagner, Y. I. Li, M. Malinsky, I. Keller, S. Fan, O. Simakov, A. Y. Ng, Z. W. Lim, E. Bezault, J. Turner-Maier, J. Johnson, R. Alcazar, H. J. Noh, P. Russell, B. Aken, J. Alföldi, C. Amemiya, N. Azzouzi, J.-F. Baroiller, F. Barloy-Hubler, A. Berlin, R. Bloomquist, K. L. Carleton, M. A. Conte, H. D’Cotta, O. Eshel, L. Gaffney, F. Galibert, H. F. Gante, S. Gnerre, L. Greuter, R. Guyon, N. S. Haddad, W. Haerty, R. M. Harris, H. A. Hofmann, T. Hourlier, G. Hulata, D. B. Jaffe, M. Lara, A. P. Lee, I. MacCallum, S. Mwaiko, M. Nikaido, H. Nishihara, C. Ozouf-Costaz, D. J. Penman, D. Przybylski, M. Rakotomanga, S. C. P. Renn, F. J. Ribeiro, M. Ron, W. Salzburger, L. Sanchez-Pulido, M. E. Santos, S. Searle, T. Sharpe, R. Swofford, F. J. Tan, L. Williams, S. Young, S. Yin, N. Okada, T. D. Kocher, E. A. Miska, E. S. Lander, B. Venkatesh, R. D. Fernald, A. Meyer, C. P. Ponting, J. T. Streelman, K. Lindblad-Toh, O. Seehausen & F. Di Palma, 2014. The genomic substrate for adaptive radiation in African cichlid fish. Nature 513: 375–381.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Briggs, J. C., 2003. Fishes and birds: Gondwana life rafts reconsidered. Systematic Biology 52: 548–553.PubMedCrossRefPubMedCentralGoogle Scholar
  23. Bromham, L., S. Duchêne, X. Hua, A. M. Ritchie, D. A. Duchêne & S. Y. W. Ho, 2018. Bayesian molecular dating: opening up the black box. Biological Reviews 93(2): 1165–1191.Google Scholar
  24. Brown, J. W. & S. A. Smith, 2017. The past sure is tense: on interpreting phylogenetic divergence time estimates. Systematic Biology 61(5): 170.Google Scholar
  25. Carlton, J. T., J. W. Chapman, J. B. Geller, J. A. Miller, D. A. Carlton, M. I. McCuller, N. C. Treneman, B. P. Steves & G. M. Ruiz, 2017. Tsunami-driven rafting: transoceanic species dispersal and implications for marine biogeography. Science 357: 1402–1406.PubMedCrossRefPubMedCentralGoogle Scholar
  26. Carnevale, G., C. Sorbini & W. Landini, 2003. Oreochromis lorenzoi, a new species of tilapiine cichlid from the Late Miocene of central Italy. Journal of Vertebrate Paleontology 23: 508–516.CrossRefGoogle Scholar
  27. Chakrabarty, P., 2004. Cichlid biogeography: comment and review. Fish and Fisheries 5: 97–119.CrossRefGoogle Scholar
  28. Chakrabarty, P. 2007. Taxonomic status of the hispaniolan Cichlidae. Occasional papers of the University of Michigan Museum of Zoology 737: 1–20.Google Scholar
  29. Chandrasekar, S., T. Nich, G. Tripathi, N. P. Sahu, A. K. Pal & S. Dasgupta, 2014. Acclimation of brackish water pearl spot (Etroplus suratensis) to various salinities: relative changes in abundance of branchial Na\(^{+}\)/K\(^{+}\)-ATPase and Na\(^{+}\)/K\(^{+}\)/2Cl\(^{-}\) co-transporter in relation to osmoregulatory parameters. Fish Physiology and Biochemistry 40: 983–996.PubMedCrossRefPubMedCentralGoogle Scholar
  30. Chapman, C. R. & D. Morrison, 1994. Impacts on the Earth by asteroids and comets: assessing the hazard. Nature 367: 33–40.CrossRefGoogle Scholar
  31. Chen, W.-J., F. Santini, G. Carnevale, J.-N. Chen, S.-H. Liu, S. Lavoué & R. L. Mayden, 2014. New insights on early evolution of spiny-rayed fishes (Teleostei: Acanthomorpha). Frontiers in Marine Science 1: 53.CrossRefGoogle Scholar
  32. Cockerell, T. D. A., 1923. A fossil cichlid fish from the Republic of Haiti. Proceedings of the US National Museum 63: 1–3.Google Scholar
  33. Conkel, D., 1993. Cichlids of North and Central America. TFH Publications, Neptune City, NJ.Google Scholar
  34. Cyrus, D. P. & L. Vivier, 2006. Status of the estuarine fish fauna in the St Lucia Estuarine System, South Africa, after 30 months of mouth closure. African Journal of Aquatic Science 31: 71–81.CrossRefGoogle Scholar
  35. del Papa, C., A. Kirschbaum, J. Powell, A. Brod, F. Hongn & M. Pimentel, 2010. Sedimentological, geochemical and paleontological insights applied to continental omission surfaces: a new approach for reconstructing an Eocene foreland basin in NW Argentina. Journal of South American Earth Sciences 29: 327–345.CrossRefGoogle Scholar
  36. de Oliveira, F. B., E. C. Molina & G. Marroig. 2009. Paleogeography of the South Atlantic: a route for primates and rodents into the New World? In: Garber, P. A., A. Estrada, J. C. Bicca-Marques, E. W. Heymann & K. B. Strier (eds), South American Primates: Comparative Perspectives in the Study of Behavior, Ecology, and Conservation. Springer, New York, USA.Google Scholar
  37. Dilyte, J. 2014. Population structure and gene flow in desert environments: an application of molecular tools to isolated fish populations in West Africa. MSc thesis, University of Porto.Google Scholar
  38. Dornburg, A., J. P. Townsend, M. Friedman & T. J. Near, 2014. Phylogenetic informativeness reconciles ray-finned fish molecular divergence times. BMC Evolutionary Biology 14: 169.PubMedPubMedCentralCrossRefGoogle Scholar
  39. dos Reis, M., P. C. J. Donoghue & Z. Yang, 2016. Bayesian molecular clock dating of species divergences in the genomics era. Nature Reviews Genetics 17: 71–80.PubMedCrossRefPubMedCentralGoogle Scholar
  40. Drummond, A. J. & A. Rambaut, 2007. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology 7: 214.PubMedPubMedCentralCrossRefGoogle Scholar
  41. Drummond, A. J., S. Y. W. Ho, M. J. Philips & A. Rambaut, 2006. Relaxed phylogenetics and dating with confidence. PLOS Biology 4: e88.PubMedPubMedCentralCrossRefGoogle Scholar
  42. Elmer, K. R., S. Fan, H. M. Gunter, J. C. Jones, S. Boekhoff, S. Kuraku & A. Meyer, 2010. Rapid evolution and selection inferred from the transcriptomes of sympatric crater lake cichlid fishes. Molecular Ecology 19: 197–211.PubMedCrossRefPubMedCentralGoogle Scholar
  43. Eytan, R. I., B. R. Evans, A. Dornburg, A. R. Lemmon, E. M. Lemmon, P. C. Wainwright & T. J. Near. 2015. Are 100 enough? Inferring acanthomorph teleost phylogeny using anchored hybrid enrichment. BMC Evolutionary Biology, 15, 113.Google Scholar
  44. Farias, I. P., G. Ortí, I. Sampaio, H. Schneider & A. Meyer, 1999. Mitochondrial DNA phylogeny of the family Cichlidae: monophyly and fast molecular evolution of the neotropical assemblage. Journal of Molecular Evolution 48: 703–711.PubMedCrossRefGoogle Scholar
  45. Farias, I. P., G. Ortí & A. Meyer, 2000. Total evidence: molecules, morphology, and the phylogenetics of cichlid fishes. Journal of Experimental Zoology 288: 76–92.PubMedCrossRefGoogle Scholar
  46. Flicek, P., M. R. Amode, D. Barrell, K. Beal, S. Brent, Y. Chen, P. Clapham, G. Coates, S. Fairley, S. Fitzgerald, L. Gordon, M. Hendrix, T. Hourlier, N. Johnson, A. Kahari, D. Keefe, S. Keenan, R. Kinsella, F. Kokocinski, E. Kulesha, P. Larsson, I. Longden, W. McLaren, B. Overduin, B. Pritchard, H. S. Riat, D. Rios, G. R. S. Ritchie, M. Ruffier, M. Schuster, D. Sobral, G. Spudich, Y. A. Tang, S. Trevanion, J. Vandrovcova, A. J. Vilella, S. White, S. P. Wilder, A. Zadissa, J. Zamora, B. L. Aken, E. Birney, F. Cunningham, I. Dunham, R. Durbin, X. M. Fernandez-Suarez, J. Herrero, T. J. P. Hubbard, A. Parker, G. Proctor, J. Vogel & S. M. J. Searle, 2011. Ensembl 2011. Nucleic Acids Research 39: D800–D806.PubMedCrossRefPubMedCentralGoogle Scholar
  47. Foote, M. & A. I. Miller, 2007. Principles of Paleontology, 3rd ed. W. H. Freeman, New York.Google Scholar
  48. Friedman, M. 2014. Mesozoic Fishes 5: Global Diversity and Evolution by G. Arratia, H.-P. Schultze and M. V. H. Wilson. Copeia 2014: 411–415.Google Scholar
  49. Friedman, M., B. P. Keck, A. Dornburg, R. I. Eytan, C. H. Martin, C. D. Hulsey, P. C. Wainwright & T. J. Near, 2013. Molecular and fossil evidence place the origin of cichlid fishes long after Gondwanan rifting. Proceedings of the Royal Society of London B: Biological Sciences 280(20131): 733.Google Scholar
  50. Gavryushkina, A., T. A. Heath, D. T. Ksepka, T. Stadler, D. Welch & A. J. Drummond, 2017. Bayesian total-evidence dating reveals the recent crown radiation of penguins. Systematic Biology 66: 57–73.PubMedPubMedCentralGoogle Scholar
  51. Genner, M. J. & M. P. Haesler, 2010. Pliocene isolation of a north-west Saharan cichlid fish. Journal of Fish Biology 76: 435–441.PubMedCrossRefPubMedCentralGoogle Scholar
  52. Genner, M. J., O. Seehausen, D. H. Lunt, D. A. Joyce, P. W. Shaw, G. R. Carvalho & G. F. Turner, 2007. Age of cichlids: new dates for ancient lake fish radiations. Molecular Biology and Evolution 24: 1269–1282.PubMedCrossRefPubMedCentralGoogle Scholar
  53. Gewin, V., 2013. Tsunami triggers invasion concerns. Nature 495: 13–14.PubMedCrossRefPubMedCentralGoogle Scholar
  54. Glasauer, S. M. K. & S. C. F. Neuhauss, 2014. Whole-genome duplication in teleost fishes and its evolutionary consequences. Molecular Genetics and Genomics 289: 1045–1060.PubMedCrossRefPubMedCentralGoogle Scholar
  55. Goren, M. & R. Ortal, 1999. Biogeography, diversity and conservation of the inland water fish communities in Israel. Biological Conservation 89: 1–9.CrossRefGoogle Scholar
  56. Grant, P. & B. Grant, 2008. How and Why Species Multiply: The Radiation of Darwin’s Finches. Princeton University Press, Princeton, NJ.Google Scholar
  57. Graur, D. & W. Martin, 2004. Reading the entrails of chickens: molecular timescales of evolution and the illusion of precision. Trends in Genetics 20: 80–86.PubMedCrossRefPubMedCentralGoogle Scholar
  58. Guindon, S., 2010. Bayesian estimation of divergence times from large sequence alignments. Molecular Biology and Evolution 27: 1768–1781.PubMedCrossRefPubMedCentralGoogle Scholar
  59. Guindon, S., 2012. From trajectories to averages: an improved description of the heterogeneity of substitution rates along lineages. Systematic Biology 62: 22–34.PubMedCrossRefPubMedCentralGoogle Scholar
  60. Guindon, S., 2018. Accounting for calibration uncertainty: Bayesian molecular dating as a “doubly intractable” problem. Systematic Biology 67: 651–661.PubMedCrossRefPubMedCentralGoogle Scholar
  61. Guinther, E. B., 1971. Ecologic observations on an estuarine environment at Fanning Atoll. Pacific Science 25: 249–259.Google Scholar
  62. Harris, A., 2008. What Spaceguard did. Nature 453: 1178–1179.PubMedCrossRefPubMedCentralGoogle Scholar
  63. Harrison, T., C. P. Msuya, A. M. Murray, B. F. Jacobs, A. M. Báez, R. Mundil & K. R. Ludwig. 2001. Paleontological investigations at the Eocene locality of Mahenge in North-Central Tanzania, East Africa. In: Gunnell, G. E. (ed.), Eocene Diversity: Unusual Occurrences and Rarely Sampled Habitats. Kluwer Academic/Plenum Publishers, New York, pp 39–74.CrossRefGoogle Scholar
  64. Heath, T. A., J. P. Huelsenbeck & T. Stadler, 2014. The fossilized birth-death process for coherent calibration of divergence-time estimates. Proceedings of the National Academy of Sciences USA 111: E2957–E2966.CrossRefGoogle Scholar
  65. Hedman, M., 2010. Constraints on clade ages from fossil outgroups. Paleobiology 36: 16–31.CrossRefGoogle Scholar
  66. Heine, C., J. Zoethout & R. D. Müller, 2013. Kinematics of the South Atlantic rift. Solid Earth 4: 215–253.CrossRefGoogle Scholar
  67. Heled, J. & A. J. Drummond, 2010. Bayesian inference of species trees from multilocus data. Molecular Biology and Evolution 27: 570–580.PubMedCrossRefPubMedCentralGoogle Scholar
  68. Ho, S. Y. W. & S. Duchêne, 2014. Molecular-clock methods for estimating evolutionary rates and timescales. Molecular Ecology 23: 5947–5965.PubMedCrossRefPubMedCentralGoogle Scholar
  69. Höhna, S., M. J. Landis, T. A. Heath, B. Boussau, N. Lartillot, B. R. Moore, J. P. Huelsenbeck & F. Ronquist, 2016. RevBayes: Bayesian phylogenetic inference using graphical models and an interactive model-specification language. Systematic Biology 65: 726–736.PubMedPubMedCentralCrossRefGoogle Scholar
  70. Hurley, I. A., R. L. Mueller, K. A. Dunn, E. J. Schmidt, M. Friedman, R. K. Ho, V. E. Prince, Z. Yang, M. G. Thomas & M. I. Coates, 2007. A new time-scale for ray-finned fish evolution. Proceedings of the Royal Society of London B: Biological Sciences 274: 489–498.CrossRefGoogle Scholar
  71. Inoue, J. G., M. Miya, B. Venkatesh & M. Nishida, 2005. The mitochondrial genome of Indonesian coelacanth Latimeria menadoensis (Sarcopterygii: Coelacanthiformes) and divergence time estimation between the two coelacanths. Gene 349: 227–235.PubMedCrossRefPubMedCentralGoogle Scholar
  72. Ivory, S. J., M. W. Blome, J. W. King, M. M. McGlue, J. E. Cole & A. S. Cohen, 2016. Environmental change explains cichlid adaptive radiation at Lake Malawi over the past 1.2 million years. Proceedings of the National Academy of Sciences USA 113: 11895–11900.CrossRefGoogle Scholar
  73. Jablonski, D., 1994. Extinctions in the fossil record. Philosophical Transactions of the Royal Society of London B: Biological Sciences 344: 11–17.CrossRefGoogle Scholar
  74. Janzen, T. & R. Etienne, 2016. Inferring the role of habitat dynamics in driving diversification: evidence for a species pump in Lake Tanganyika cichlids. bioRxiv. preprint.
  75. Kato, M. (ed.), 2000. The Biology of Biodiversity. Springer, Tokyo.Google Scholar
  76. Knaggs, E. H., 1977. Status of the genus Tilapia in California’s estuarine and marine waters. Cal-Neva Wildlife Transactions 1977: 60–67.Google Scholar
  77. Koblmüller, S., K. M. Sefc & C. Sturmbauer, 2008. The Lake Tanganyika cichlid species assemblage: recent advances in molecular phylogenetics. Hydrobiologia 615: 5–20.CrossRefGoogle Scholar
  78. Koblmüller, S., B. Egger, C. Sturmbauer & K. M. Sefc, 2010. Rapid radiation, ancient incomplete lineage sorting and ancient hybridization in the endemic Lake Tanganyika cichlid tribe Tropheini. Molecular Phylogenetics and Evolution 55: 318–334.PubMedCrossRefPubMedCentralGoogle Scholar
  79. Kraiem, M. M., 1983. Les poissons d’eau douce de Tunisie: Inventaire commenté et répartition géographique. Bull Inst Natn Scient Tech Océanogr Pêche, Salammbô 10: 107–124.Google Scholar
  80. Kullander, S. O. 1998. A phylogeny and classification of the South American Cichlidae (Teleostei: Perciformes). In: Malabarba, L. R., R. E. Reis, R. P. Vari, Z. M. S. Lucena & C. A. S. Lucena (eds.), Phylogeny and Classification of Neotropical Fishes. Edipucrs, Porto Alegre, pp 461–496.Google Scholar
  81. Kumar, S. & S. B. Hedges, 1998. A molecular timescale for vertebrate evolution. Nature 392: 917–920.PubMedPubMedCentralCrossRefGoogle Scholar
  82. Kumazawa, Y., M. Yamaguchi & M. Nishida. 2000. Mitochondrial molecular clocks and the origin of euteleostean biodiversity: familial radiation of perciforms may have predated the Cretaceous/Tertiary boundary. In: M. Kato (eds), The Biology of Biodiversity. Springer, Tokyo, Japan, pp 35–52.CrossRefGoogle Scholar
  83. Lartillot, N., T. Lepage & S. Blanquart, 2009. PhyloBayes 3: a Bayesian software package for phylogenetic reconstruction and molecular dating. Bioinformatics 25: 2286–2288.PubMedCrossRefPubMedCentralGoogle Scholar
  84. Lepage, T., D. Bryant, H. Philippe & N. Lartillot, 2007. A general comparison of relaxed molecular clock models. Molecular Biology and Evolution 24: 2669–2680.PubMedCrossRefPubMedCentralGoogle Scholar
  85. Lévêque, C., 1990. Relict tropical fish fauna in Central Sahara. Ichthyological Exploration of Freshwaters 1: 39–48.Google Scholar
  86. Lippitsch, E. & N. Micklich, 1998. Cichlid fish biodiversity in an Oligocene lake. Italian Journal of Zoology 65: 185–188.CrossRefGoogle Scholar
  87. Lobel, P. S., 1980. Invasion by the Mozambique tilapia (Sarotherodon mossambicus; Pisces; Cichlidae of a Pacific atoll marine ecosystem. Micronesica 16: 349–355.Google Scholar
  88. Loh, Y. H. E., E. Bezault, F. M. Muenzel, R. B. Roberts, R. Swofford, M. Barluenga, C. E. Kidd, A. E. Howe, F. Di Palma, K. Lindblad-Toh, J. Hey, O. Seehausen, W. Salzburger, T. D. Kocher & J. T. Streelman, 2013. Origins of shared genetic variation in African cichlids. Molecular Biology and Evolution 30: 906–917.PubMedCrossRefPubMedCentralGoogle Scholar
  89. López-Fernández, H., R. L. Honeycutt, M. L. J. Stiassny & K. O. Winemiller, 2005. Morphology, molecules, and character congruence in the phylogeny of South American geophagine cichlids (Perciformes, Labroidei). Zoologica Scripta 34: 627–651.CrossRefGoogle Scholar
  90. López-Fernández, H., J. H. Arbour, K. O. Winemiller & R. L. Honeycutt, 2013. Testing for ancient adaptive radiations in neotropical cichlid fishes. Evolution 67: 1321–1337.PubMedPubMedCentralGoogle Scholar
  91. Lozano-Fernandez, J., M. dos Reis, P. C. J. Donoghue & D. Pisani, 2017. RelTime rates collapse to a strict clock when estimating the timeline of animal diversification. Genome Biology and Evolution 9: 1320–1328.PubMedPubMedCentralCrossRefGoogle Scholar
  92. Lucas, S. G., A. J. Lichtig, K. Pérez & G. E. Alvarado, 2017. Fossils of cichlid fishes from the Miocene and Pleistocene of Costa Rica. Revista Geológica de América Central 57: 45–53.Google Scholar
  93. Lundberg, J. G. 1993. Africa–South American freshwater fish clades and continental drift: problems with a paradigm. In: Goldblatt, P. (ed.), Africa–South American Freshwater Fish Clades and Continental Drift: Problems with a Paradigm. Biological relationships between Africa and South America. Yale University Press, New Haven, USA.Google Scholar
  94. Maddison, W. P., 1997. Gene trees in species trees. Systematic Biology 46: 523–536.CrossRefGoogle Scholar
  95. Malabarba, M. C. & L. R. Malabarba, 2008. A new cichlid Tremembichthys garcia (Actinopterygii, Perciformes) from the Eocene-Oligocene of Eastern Brazil. Revista Brasileira de Paleontologia 11: 59–68.CrossRefGoogle Scholar
  96. Malabarba, M. C., O. Zuleta & C. Del Papa, 2006. Proterocara argentina, a new fossil cichlid from the Lumbrera Formation, Eocene of Argentina. Journal of Vertebrate Paleontology 26: 267–275.CrossRefGoogle Scholar
  97. Malabarba, M. C., L. R. Malabarba & C. Del Papa, 2010. Gymnogeophagus eocenicus, n. sp (Perciformes: Cichlidae), an Eocene cichlid from the Lumbrera formation in Argentina. Journal of Vertebrate Paleontology 30: 341–350.CrossRefGoogle Scholar
  98. Malabarba, M. C., L. R. Malabarba & H. López-Fernández, 2014. On the Eocene cichlids from the Lumbrera Formation: additions and implications for the Neotropical ichthyofauna. Journal of Vertebrate Paleontology 34: 49–58.CrossRefGoogle Scholar
  99. Malinsky, M., H. Svardal, A. M. Tyers, E. A. Miska, M. J. Genner, G. F. Turner & R. Durbin, 2017. Whole genome sequences of Malawi cichlids reveal multiple radiations interconnected by gene flow. bioRxiv. preprint.
  100. Malmstrøm, M., M. Matschiner, O. K. Tørresen, B. Star, L. G. Snipen, T. F. Hansen, H. T. Baalsrud, A. J. Nederbragt, R. Hanel, W. Salzburger, N. C. Stenseth, K. S. Jakobsen & S. Jentoft, 2016. Evolution of the immune system influences speciation rates in teleost fishes. Nature Genetics 48: 1204–1210.PubMedCrossRefPubMedCentralGoogle Scholar
  101. Marshall, C. R., 1997. Confidence intervals on stratigraphic ranges with nonrandom distributions of fossil horizons. Paleobiology 23(2): 165–173.CrossRefGoogle Scholar
  102. Marshall, C. R., 2008. A simple method for bracketing absolute divergence times on molecular phylogenies using multiple fossil calibration points. The American Naturalist 171: 726–742.PubMedCrossRefPubMedCentralGoogle Scholar
  103. Matschiner, M., R. Hanel & W. Salzburger, 2011. On the origin and trigger of the notothenioid adaptive radiation. PLOS ONE 6(e18): 911.Google Scholar
  104. Matschiner, M., Z. Musilová, J. M. I. Barth, Z. Starostová, W. Salzburger, M. Steel & R. R. Bouckaert, 2017. Bayesian phylogenetic estimation of clade ages supports trans-Atlantic dispersal of cichlid fishes. Systematic Biology 66: 3–22.PubMedCrossRefGoogle Scholar
  105. Matsui, T., F. Imamura, E. Tajika, Y. Nakano & Y. Fujisawa, 2002. Generation and propagation of a tsunami from the Cretaceous-Tertiary impact event. Geological Society of America Special Paper 356: 69–77.Google Scholar
  106. Matthews, K. J., K. T. Maloney, S. Zahirovic, S. E. Williams, M. Seton & R. D. Müller, 2016. Global plate boundary evolution and kinematics since the late Paleozoic. Global and Planetary Change 146: 226–250.CrossRefGoogle Scholar
  107. McMahan, C. D., P. Chakrabarty, J. S. Sparks, W. L. Smith & M. P. Davis, 2013. Temporal patterns of diversification across global cichlid biodiversity (Acanthomorpha: Cichlidae). PLOS ONE 8(e71): 162.Google Scholar
  108. Meier, J. I., D. A. Marques, S. Mwaiko, C. E. Wagner, L. Excoffier & O. Seehausen, 2017. Ancient hybridization fuels rapid cichlid fish adaptive radiations. Nature Communications 8: 1–11.CrossRefGoogle Scholar
  109. Meyer, B. S., M. Matschiner & W. Salzburger, 2017. Disentangling incomplete lineage sorting and introgression to refine species-tree estimates for Lake Tanganyika cichlid fishes. Systematic Biology 66: 531–550.PubMedGoogle Scholar
  110. Miya, M., T. W. Pietsch, J. W. Orr, R. J. Arnold, T. P. Satoh, A. M. Shedlock, H.-C. Ho, M. Shimazaki, M. Yabe & M. Nishida, 2010. Evolutionary history of anglerfishes (Teleostei: Lophiiformes): a mitogenomic perspective. BMC Evolutionary Biology 10: 58.PubMedPubMedCentralCrossRefGoogle Scholar
  111. Moulin, M., D. Aslanian & P. Unternehr, 2010. A new starting point for the South and Equatorial Atlantic Ocean. Earth-Science Reviews 98: 1–37.CrossRefGoogle Scholar
  112. Murray, A. M., 2000a. Eocene cichlid fishes from Tanzania, East Africa. Journal of Vertebrate Paleontology 20: 651–664.CrossRefGoogle Scholar
  113. Murray, A. M. 2000b. The Eocene cichlids (Perciformes: Labroidei) of Mahenge, Tanzania. PhD thesis, McGill University, Montreal.Google Scholar
  114. Murray, A. M., 2001a. The fossil record and biogeography of the Cichlidae (Actinopterygii: Labroidei). Biological Journal of the Linnean Society 74: 517–532.CrossRefGoogle Scholar
  115. Murray, A. M., 2001b. The oldest fossil cichlids (Teleostei: Perciformes): indication of a 45 million-year-old species flock. Proceedings of the Royal Society of London B: Biological Sciences 268: 679–684.CrossRefGoogle Scholar
  116. Murray, A. M., 2002. Lower pharyngeal jaw of a cichlid fish (Actinopterygii; Labroidei) from an Early Oligocene site in the Fayum, Egypt. Journal of Vertebrate Paleontology 22: 453–455.CrossRefGoogle Scholar
  117. Muschick, M., A. Indermaur & W. Salzburger, 2012. Convergent evolution within an adaptive radiation of cichlid fishes. Current Biology 22: 2362–2368.PubMedCrossRefGoogle Scholar
  118. Myers, G. S., 1938. Fresh-water fishes and west Indian zoogeography. Annual Report of the Board of Regents of the Smithsonian Institution 92: 339–364.Google Scholar
  119. Myers, G. S., 1949. Salt-tolerance of fresh-water fish groups in relation to zoogeographical problems. Bijdragen tot de Dierkunde 28: 315–322.Google Scholar
  120. Near, T. J., P. A. Meylan & H. B. Shaffer, 2005. Assessing concordance of fossil calibration points in molecular clock studies: an example using turtles. The American Naturalist 165: 137–146.PubMedCrossRefPubMedCentralGoogle Scholar
  121. Near, T. J., R. I. Eytan, A. Dornburg, K. L. Kuhn, J. A. Moore, M. P. Davis, P. C. Wainwright, M. Friedman & W. L. Smith, 2012. Resolution of ray-finned fish phylogeny and timing of diversification. Proceedings of the National Academy of Sciences USA 109: 13698–13703.CrossRefGoogle Scholar
  122. Near, T. J., A. Dornburg, R. I. Eytan, B. P. Keck, W. L. Smith, K. L. Kuhn, J. A. Moore, S. A. Price, F. T. Burbrink, M. Friedman & P. C. Wainwright, 2013. Phylogeny and tempo of diversification in the superradiation of spiny-rayed fishes. Proceedings of the National Academy of Sciences USA 110: 12738–12743.CrossRefGoogle Scholar
  123. Nigrelli, R. F. 1940. Mortality statistics for specimens in the New York aquarium, 1939. Zoologica: Scientific Contributions of the New York Zoological Society 25: 525–552.Google Scholar
  124. Nowak, M. D., A. B. Smith, C. Simpson & D. J. Zwickl, 2013. A simple method for estimating informative node age priors for the fossil calibration of molecular divergence time analyses. PLoS ONE 8(e66): 245.Google Scholar
  125. Nugon, R. W. 2003. Salinity tolerance of juveniles of four varieties of Tilapia. PhD thesis, Louisiana State University and Agriculture and Mechanical College.Google Scholar
  126. Ogilvie, H. A., R. R. Bouckaert & A. J. Drummond, 2017. StarBEAST2 brings faster species tree inference and accurate estimates of substitution rates. Molecular Biology and Evolution 34: 2101–2114.PubMedPubMedCentralCrossRefGoogle Scholar
  127. Oldfield, R. G., 2004. Saltwater cichlids. Knowledge of salinity tolerance and preference may allow new species combinations and improved husbandry in aquaria. Freshwater and Marine Aquarium 27: 98–104.Google Scholar
  128. Olyphant, J. R., R. A. Johnson & A. N. Hughes, 2017. Evolution of the Southern Guinea Plateau: implications on Guinea-Demerara Plateau formation using insights from seismic, subsidence, and gravity data. Tectonophysics 717: 358–371.CrossRefGoogle Scholar
  129. Pariselle, A., W. A. Boeger, J. Snoeks, C. F. Bilong Bilong, S. Morand & M. P. M. Vanhove, 2011. The monogenean parasite fauna of cichlids: a potential tool for host biogeography. International Journal of Evolutionary Biology 2011: 1–15.CrossRefGoogle Scholar
  130. Parvatheswararao, V., 1967. Some mechanisms of salinity acclimation in the euryhaline teleost, Etroplus maculatus. Marine Biology 1: 97–101.CrossRefGoogle Scholar
  131. Patterson, C., 1993. The Fossil Record 2. Chapman & Hall, London: 621–656.Google Scholar
  132. Perez, P. A., M. C. Malabarba & C. Del Papa, 2010. A new genus and species of Heroini (Perciformes: Cichlidae) from the early Eocene of southern South America. Neotropical Ichthyology 8: 631–642.CrossRefGoogle Scholar
  133. Rabinowitz, P. D. & S. Woods, 2006. The Africa-Madagascar connection and mammalian migrations. Journal of African Earth Sciences 44: 270–276.CrossRefGoogle Scholar
  134. Rannala, B. & Z. Yang, 2007. Inferring speciation times under an episodic molecular clock. Systematic Biology 56: 453–466.PubMedCrossRefPubMedCentralGoogle Scholar
  135. Ronquist, F., S. Klopfstein, L. Vilhelmsen, S. Schulmeister, D. L. Murray & A. P. Rasnitsyn, 2012a. A total-evidence approach to dating with fossils, applied to the early radiation of the Hymenoptera. Systematic Biology 61: 973–999.PubMedPubMedCentralCrossRefGoogle Scholar
  136. Ronquist, F., M. Teslenko, P. van der Mark, D. L. Ayres, A. Darling, S. Höhna, B. Larget, L. Liu, M. A. Suchard & J. P. Huelsenbeck, 2012b. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61(3): 539–542.PubMedPubMedCentralCrossRefGoogle Scholar
  137. Rüber, L., E. Verheyen, C. Sturmbauer & A. Meyer. 1998. Lake level fluctuations and speciation in a rock-dwelling cichlid tribe endemic to Lake Tanganyika. In: Grant, P., (ed.), Evolution on Islands. Oxford University Press, Oxford, UK, pp 225–240.Google Scholar
  138. Saitou, N. & M. Nei, 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4: 406–425.PubMedPubMedCentralGoogle Scholar
  139. Santini, F. & J. C. Tyler, 2003. A phylogeny of the families of fossil and extant tetraodontiform fishes (Acanthomorpha, Tetraodontiformes), upper cretaceous to recent. Zoological Journal of the Linnean Society 139: 565–617.CrossRefGoogle Scholar
  140. Santini, F., L. J. Harmon, G. Carnevale & M. E. Alfaro, 2009. Did genome duplication drive the origin of teleosts? A comparative study of diversification in ray-finned fishes. BMC Evolutionary Biology 9: 194.PubMedPubMedCentralCrossRefGoogle Scholar
  141. Santini, F., L. Sorenson, T. Marcroft, A. Dornburg & M. E. Alfaro, 2013. A multilocus molecular phylogeny of boxfishes (Aracanidae, Ostraciidae; Tetraodontiformes). Molecular Phylogenetics and Evolution 66: 153–160.PubMedCrossRefPubMedCentralGoogle Scholar
  142. Schluter, D., 2000. The Ecology of Adaptive Radiation. Oxford University Press, New York.Google Scholar
  143. Schulte, P., L. Alegret, I. Arenillas, J. A. Arz, P. J. Barton, P. R. Bown, T. J. Bralower, G. L. Christeson, P. Claeys, C. S. Cockell, G. S. Collins, A. Deutsch, T. J. Goldin, K. Goto, J. M. Grajales-Nishimura, R. A. F. Grieve, S. P. S. Gulick, K. R. Johnson, W. Kiessling, C. Koeberl, D. A. Kring, K. G. Macleod, T. Matsui, J. Melosh, A. Montanari, J. V. Morgan, C. R. Neal, D. J. Nichols, R. D. Norris, E. Pierazzo, G. Ravizza, M. Rebolledo-Vieyra, W. U. Reimold, E. Robin, T. Salge, R. P. Speijer, A. R. Sweet, J. Urrutia-Fucugauchi, V. Vajda, M. T. Whalen & P. S. Willumsen, 2010. The Chicxulub asteroid impact and mass extinction at the Cretaceous–Paleogene boundary. Science 327: 1214–1218.PubMedCrossRefPubMedCentralGoogle Scholar
  144. Schwarzer, J., B. Misof, D. Tautz & U. K. Schliewen, 2009. The root of the East African cichlid radiations. BMC Evolutionary Biology 9: 186.PubMedPubMedCentralCrossRefGoogle Scholar
  145. Seehausen, O., 2006. African cichlid fish: a model system in adaptive radiation research. Proceedings of the Royal Society of London B: Biological Sciences 273: 1987–1998.CrossRefGoogle Scholar
  146. Sefc, K. M., K. Mattersdorfer, A. Ziegelbecker, N. Neuhüttler, O. Steiner, W. Goessler & S. Koblmüller, 2017. Shifting barriers and phenotypic diversification by hybridisation. Ecology Letters 20: 651–662.PubMedCrossRefPubMedCentralGoogle Scholar
  147. Setiamarga, D. H. E., M. Miya, Y. Yamanoue, Y. Azuma, J. G. Inoue, N. B. Ishiguro, K. Mabuchi & M. Nishida, 2009. Divergence time of the two regional medaka populations in Japan as a new time scale for comparative genomics of vertebrates. Biology Letters 5: 812–816.PubMedPubMedCentralCrossRefGoogle Scholar
  148. Seton, M., R. D. Müller, S. Zahirovic, C. Gaina, T. Torsvik, G. Shephard, A. Talsma, M. Gurnis, M. Turner, S. Maus & M. Chandler, 2012. Global continental and ocean basin reconstructions since 200 Ma. Earth-Science Reviews 113: 212–270.CrossRefGoogle Scholar
  149. Smith, W. L., P. Chakrabarty & J. S. Sparks, 2008. Phylogeny, taxonomy, and evolution of Neotropical cichlids (Teleostei: Cichlidae: Cichlinae). Cladistics 24: 625–641.CrossRefGoogle Scholar
  150. Sparks, J. S. & W. L. Smith, 2004. Phylogeny and biogeography of cichlid fishes (Teleostei: Perciformes: Cichlidae). Cladistics 20: 501–517.CrossRefGoogle Scholar
  151. Sparks, J. S. & W. L. Smith, 2005. Freshwater fishes, dispersal ability, and nonevidence: “Gondwana life rafts” to the rescue. Systematic Biology 54: 158–165.Google Scholar
  152. Stange, M., M. R. Sánchez-Villagra, W. Salzburger & M. Matschiner, 2018. Bayesian divergence-time estimation with genome-wide SNP data of sea catfishes (Ariidae) supports Miocene closure of the Panamanian Isthmus. Systematic Biology 67: 681–699.PubMedPubMedCentralCrossRefGoogle Scholar
  153. Steinke, D., W. Salzburger & A. Meyer, 2006. Novel relationships among ten fish model species revealed based on a phylogenomic analysis using ESTs. Journal of Molecular Evolution 62: 772–784.PubMedCrossRefPubMedCentralGoogle Scholar
  154. Stiassny, M. L. J., 1987. Cichlid familial intrarelationships and the placement of the neotropical genus Cichla (Perciformes, Labroidei). Journal of Natural History 21: 1311–1331.CrossRefGoogle Scholar
  155. Stiassny, M. L. J. 1991. Phylogenetic intrarelationships of the family Cichlidae: an overview. In: Keenleyside, M. H. A. (ed.), Cichlid Fishes—Behaviour, Ecology and Evolution. Chapman & Hall, London, pp 1–35.Google Scholar
  156. Stickney, R. R. 1986. Tilapia tolerance of saline waters: a review. Progressive Fish-Culturist 48: 161.CrossRefGoogle Scholar
  157. Storey, B. C., 1995. The role of mantle plumes in continental breakup: case histories from Gondwanaland. Nature 377: 301–308.CrossRefGoogle Scholar
  158. Streelman, J. T. & S. A. Karl, 1997. Reconstructing labroid evolution with single-copy nuclear DNA. Proceedings of the Royal Society of London B: Biological Sciences 264: 1011–1020.CrossRefGoogle Scholar
  159. Streelman, J. T., R. Zardoya, A. Meyer & S. A. Karl, 1998. Multilocus phylogeny of cichlid fishes (Pisces: Perciformes): evolutionary comparison of microsatellite and single-copy nuclear loci. Molecular Biology and Evolution 15: 798–808.PubMedCrossRefPubMedCentralGoogle Scholar
  160. Sturmbauer, C., S. Baric, W. Salzburger, L. Rüber & E. Verheyen, 2001. Lake level fluctuations synchronize genetic divergences of cichlid fishes in African lakes. Molecular Biology and Evolution 18: 144–154.PubMedCrossRefGoogle Scholar
  161. Tamura, K. & M. Nei, 1993. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution 10: 512–526.PubMedPubMedCentralGoogle Scholar
  162. Tamura, K., F. U. Battistuzzi, P. Billing-Ross, O. Murillo, A. Filipski & S. Kumar, 2012. Estimating divergence times in large molecular phylogenies. Proceedings of the National Academy of Sciences USA 109: 19333–19338.CrossRefGoogle Scholar
  163. Theis, A., O. Roth, F. Cortesi, F. Ronco, W. Salzburger & B. Egger, 2017. Variation of anal fin egg-spots along an environmental gradient in a haplochromine cichlid fish. Evolution 71: 766–777.PubMedCrossRefPubMedCentralGoogle Scholar
  164. Thorne, J. L., H. Kishino & I. S. Painter, 1998. Estimating the rate of evolution of the rate of molecular evolution. Molecular Biology and Evolution 15: 1647–1657.PubMedCrossRefPubMedCentralGoogle Scholar
  165. Toljagić, O., K. L. Voje, M. Matschiner, L. H. Liow & T. F. Hansen, 2018. Millions of years behind: slow adaptation of ruminants to grasslands. Systematic Biology 67: 145–157.PubMedCrossRefPubMedCentralGoogle Scholar
  166. Trape, S., 2016. A new cichlid fish in the Sahara: the Ounianga Serir lakes (Chad), a biodiversity hotspot in the desert. Comptes Rendus Biologies 339: 529–536.PubMedCrossRefPubMedCentralGoogle Scholar
  167. Tuttle, R. H., 2014. Apes and Human Evolution. Harvard University Press, Cambridge, MA.CrossRefGoogle Scholar
  168. Tyler, J. C. & L. Sorbini, 1996. New superfamily and three new families of tetraodontiform fishes from the Upper Cretaceous: the earliest and most morphologically primitive plectognaths. Smithsonian Contributions to Paleobiology 82: 1–62.CrossRefGoogle Scholar
  169. Upchurch, P., 2008. Gondwanan break-up: legacies of a lost world? Trends in Ecology and Evolution 23(4): 229–236.PubMedCrossRefPubMedCentralGoogle Scholar
  170. Van Couvering, J. A. H., 1982. Fossil cichlid fish of Africa. Special Papers in Paleontology 29: 1–103.Google Scholar
  171. Vanhove, M. P. M., P. I. Hablützel, A. Pariselle, A. Šimková, T. Huyse & J. A. M. Raeymaekers. 2016. Cichlids: a host of opportunities for evolutionary parasitology. Trends in Parasitology 32: 820–832.Google Scholar
  172. Vences, M., J. Freyhof, R. Sonnenberg, J. Kosuch & M. Veith, 2001. Reconciling fossils and molecules: Cenozoic divergence of cichlid fishes and the biogeography of Madagascar. Journal of Biogeography 28: 1091–1099.CrossRefGoogle Scholar
  173. Vivier, L., D. P. Cyrus & H. L. Jerling, 2010. Fish community structure of the St Lucia Estuarine system under prolonged drought conditions and its potential for recovery after mouth breaching. Estuarine, Coastal and Shelf Science 86(4): 568–579.CrossRefGoogle Scholar
  174. Vucetich, M. G., M. A. Reguero, M. Bond, A. M. Candela, A. A. Carlini, C. M. Deschamps, J. N. Gelfo, F. J. Goin, G. M. López, E. Ortiz Jaureguizar, R. Pascual, G. J. Scillato-Yané & E. C. Vieytes, 2007. Mamíferos continentales del Paleógeno argentino: las investigaciones de los últimos cincuenta años. Ameghiniana Publicación Especial 11: 239–255.Google Scholar
  175. Wagner, C. E., L. J. Harmon & O. Seehausen, 2012. Ecological opportunity and sexual selection together predict adaptive radiation. Nature 487: 366–369.PubMedCrossRefPubMedCentralGoogle Scholar
  176. Wagner, P. J. & J. D. Marcot, 2013. Modelling distributions of fossil sampling rates over time, space and taxa: assessment and implications for macroevolutionary studies. Methods in Ecology and Evolution 4: 703–713.CrossRefGoogle Scholar
  177. Werner, N. Y. & O. Mokady, 2004. Swimming out of Africa: mitochondrial DNA evidence for late Pliocene dispersal of a cichlid from Central Africa to the Levant. Biological Journal of the Linnean Society 82: 103–109.CrossRefGoogle Scholar
  178. Yamanoue, Y., M. Miya, J. G. Inoue, K. Matsuura & M. Nishida, 2006. The mitochondrial genome of spotted green pufferfish Tetraodon nigroviridis (Teleostei: Tetraodontiformes) and divergence time estimation among model organisms in fishes. Genes and Genetic Systems 81: 29–39.PubMedCrossRefPubMedCentralGoogle Scholar
  179. Yang, Z., 2007. PAML 4: phylogenetic analysis by maximum likelihood. Molecular Biology and Evolution 24: 1586–1591.PubMedCrossRefPubMedCentralGoogle Scholar
  180. Zardoya, R., D. M. Vollmer, C. Craddock, J. T. Streelman, S. Karl & A. Meyer, 1996. Evolutionary conservation of microsatellite flanking regions and their use in resolving the phylogeny of cichlid fishes (Pisces: Perciformes). Proceedings of the Royal Society of London B: Biological Sciences 263: 1589–1598.CrossRefGoogle Scholar
  181. Zhu, T., M. dos Reis & Z. Yang, 2015. Characterization of the uncertainty of divergence time estimation under relaxed molecular clock models using multiple loci. Systematic Biology 64: 267–280.PubMedCrossRefPubMedCentralGoogle Scholar
  182. Zuckerkandl, E. & L. Pauling. 1962. Molecular disease, evolution, and genic heterogeneity. In: Kasha, M. & B. Pullman (eds.), Horizons in Biochemistry. Academic Press, New York, pp 189–225.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Zoological InstituteUniversity of BaselBaselSwitzerland

Personalised recommendations