Skip to main content

The search for proteins involved in the formation of crustacean cuticular structures

Abstract

Crustacean cuticular structures are key features formed during a molt cycle. These structures are complex biomaterials comprising chitin and different mineral forms in distinct scaffold organizations. The formation of these complex biomaterials is controlled by the organic extracellular matrix including structural proteins. Since cuticular structures are formed de novo during each molt cycle, the spatial and temporal expression patterns of structural proteins are tightly linked to molt cycle events. As a model scenario, we demonstrate the molt-related pattern of expression of the gene encoding GAP65, a core structural protein involved in the formation of the cuticular structures of Cherax quadricarinatus. Based on this typical pattern of expression and using a binary-patterning approach, which is a specialized tool for the study of molt-related proteins, we revealed and characterized additional candidate proteins involved in the formation of crustacean cuticular structures. We propose that our approach be applied as a framework in the search for proteins involved in the formation of the crustacean cuticle. To stimulate research on this important aspect of structural biology, we put forward a schematic representation of the extracellular matrix and its proteins in three cuticular structures of C. quadricarinatus, the gastroliths, the mandibles, and the mineralized cuticle.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Abehsera, S., L. Glazer, J. Tynyakov, I. Plaschkes, V. Chalifa-Caspi, I. Khalaila, E. D. Aflalo & A. Sagi, 2015. Binary gene expression patterning of the molt cycle: the case of chitin metabolism. PLoS ONE 10(4): e0122602.

    Article  Google Scholar 

  2. Abehsera, S., S. Peles, J. Tynyakov, S. Bentov, E. D. Aflalo, S. Li, F. Li, J. Xiang & A. Sagi, 2017. MARS: a protein family involved in the formation of vertical skeletal elements. Journal of Structural Biology 198(2): 92–102.

    CAS  Article  Google Scholar 

  3. Addadi, L. & S. Weiner, 1985. Interactions between acidic proteins and crystals – stereochemical requirements in biomineralization. Proceedings of the National academy of Sciences of the United States of America 82(12): 4110–4114.

    CAS  Article  Google Scholar 

  4. Addadi, L., S. Raz & S. Weiner, 2003. Taking advantage of disorder: amorphous calcium carbonate and its roles in biomineralization. Advanced Materials 15(12): 959–970.

    CAS  Article  Google Scholar 

  5. Akiva-Tal, A., S. Kababya, Y. S. Balazs, L. Glazer, A. Berman, A. Sagi & A. Schmidt, 2011. In situ molecular NMR picture of bioavailable calcium stabilized as amorphous CaCO3 biomineral in crayfish gastroliths. Proceedings of the National academy of Sciences of the United States of America 108(36): 14763–14768.

    CAS  Article  Google Scholar 

  6. Al-Sawalmih, A., C. H. Li, S. Siegel, P. Fratzl & O. Paris, 2009. On the stability of amorphous minerals in lobster cuticle. Advanced Materials 21(40): 4011–4015.

    CAS  Article  Google Scholar 

  7. Becker, A., A. Ziegler & M. Epple, 2005. The mineral phase in the cuticles of two species of Crustacea consists of magnesium calcite, amorphous calcium carbonate, and amorphous calcium phosphate. Dalton Transactions 10: 1814–1820.

    Article  Google Scholar 

  8. Behr, M. & M. Hoch, 2005. Identification of the novel evolutionary conserved obstructor multigene family in invertebrates. FEBS Letters 579(30): 6827–6833.

    CAS  Article  Google Scholar 

  9. Bentov, S., P. Zaslansky, A. Al-Sawalmih, A. Masic, P. Fratzl, A. Sagi, A. Berman & B. Aichmayer, 2012. Enamel-like apatite crown covering amorphous mineral in a crayfish mandible. Nature Communications 3: 839.

    Article  Google Scholar 

  10. Bentov, S., E. D. Aflalo, J. Tynyakov, L. Glazer & A. Sagi, 2016. Calcium phosphate mineralization is widely applied in crustacean mandibles. Scientific Reports 6: 22118.

    CAS  Article  Google Scholar 

  11. Buchholz, F., 1989. Molt cycle and seasonal activities of chitinolytic enzymes in the integument and digestive-tract of the antarctic krill, euphausia-superba. Polar Biology 9(5): 311–317.

    Article  Google Scholar 

  12. Charles, J. P., H. Bouhin, B. Quennedey, A. Courrent & J. Delachambre, 1992. cDNA cloning and deduced amino acid sequence of a major, glycine-rich cuticular protein from the coleopteran Tenebrio molitor. The FEBS Journal 206(3): 813–819.

    CAS  Google Scholar 

  13. Cho, H. J., H. J. Cho & H. S. Kim, 2009. Osteopontin: a multifunctional protein at the crossroads of inflammation, atherosclerosis, and vascular calcification. Current Atherosclerosis Reports 11(3): 206–213.

    CAS  Article  Google Scholar 

  14. Compere, P., M. F. Jaspar-Versali & G. Goffinet, 2002. Glycoproteins from the cuticle of the Atlantic shore crab Carcinus maenas: I. Electrophoresis and western-blot analysis by use of lectins. Biological Bulletin 202(1): 61–73.

    CAS  Article  Google Scholar 

  15. Ding, D., P. A. Guerette, S. Hoon, K. W. Kong, T. Cornvik, M. Nilsson, A. Kumar, J. Lescar & A. Miserez, 2014. Biomimetic production of silk-like recombinant squid sucker ring teeth proteins. Biomacromolecules 15(9): 3278–3289.

    CAS  Article  Google Scholar 

  16. Dosztanyi, Z., V. Csizmok, P. Tompa & I. Simon, 2005. IUPred: web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content. Bioinformatics 21(16): 3433–3434.

    CAS  Article  Google Scholar 

  17. Dyson, H. J. & P. E. Wright, 2002. Coupling of folding and binding for unstructured proteins. Current Opinion in Structural Biology 12(1): 54–60.

    CAS  Article  Google Scholar 

  18. Endo, H., P. Persson & T. Watanabe, 2000. Molecular cloning of the crustacean DD4 cDNA encoding a Ca2 + -binding protein. Biochemical and Biophysical Research Communications 276(1): 286–291.

    CAS  Article  Google Scholar 

  19. Faircloth, L. M. & T. H. Shafer, 2007. Differential expression of eight transcripts and their roles in the cuticle of the blue crab, Callinectes sapidus. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 146(3): 370–383.

    Article  Google Scholar 

  20. Fisher, L. W., D. A. Torchia, B. Fohr, M. F. Young & N. S. Fedarko, 2001. Flexible structures of SIBLING proteins, bone sialoprotein, and osteopontin. Biochemical and Biophysical Research Communications 280(2): 460–465.

    CAS  Article  Google Scholar 

  21. Gasteiger, E., C. Hoogland, A. Gattiker, S. E. Duvaud, M. R. Wilkins, R. D. Appel & A. Bairoch, 2005. Protein identification and analysis tools on the ExPASy server. Springer, New York.

    Book  Google Scholar 

  22. Glazer, L. & A. Sagi, 2012. On the involvement of proteins in the assembly of the crayfish gastrolith extracellular matrix. Invertebrate Reproduction & Development 56(1): 57–65.

    CAS  Article  Google Scholar 

  23. Glazer, L., A. Shechter, M. Tom, Y. Yudkovski, S. Weil, E. D. Aflalo, R. R. Pamuru, I. Khalaila, S. Bentov, A. Berman & A. Sagi, 2010. A protein involved in the assembly of an extracellular calcium storage matrix. The Journal of Biological Chemistry 285(17): 12831–12839.

    CAS  Article  Google Scholar 

  24. Glazer, L., Z. Roth, S. Weil, E. D. Aflalo, I. Khalaila & A. Sagi, 2015. Proteomic analysis of the crayfish gastrolith chitinous extracellular matrix reveals putative protein complexes and a central role for GAP 65. Journal of Proteomics 128: 333–343.

    CAS  Article  Google Scholar 

  25. Guerette, P. A., S. Hoon, D. Ding, S. Amini, A. Masic, V. Ravi, B. Venkatesh, J. C. Weaver & A. Miserez, 2014. Nanoconfined beta-sheets mechanically reinforce the supra-biomolecular network of robust squid Sucker Ring Teeth. ACS Nano 8(7): 7170–7179.

    CAS  Article  Google Scholar 

  26. Habraken, W. J. E. M., A. Masic, L. Bertinetti, A. Al-Sawalmih, L. Glazer, S. Bentov, P. Fratzl, A. Sagi, B. Aichmayer & A. Berman, 2015. Layered growth of crayfish gastrolith: about the stability of amorphous calcium carbonate and role of additives. Journal of Structural Biology 189(1): 28–36.

    CAS  Article  Google Scholar 

  27. Hild, S., O. Marti & A. Ziegler, 2008. Spatial distribution of calcite and amorphous calcium carbonate in the cuticle of the terrestrial crustaceans Porcellio scaber and Armadillidium vulgare. Journal of Structural Biology 163(1): 100–108.

    CAS  Article  Google Scholar 

  28. Huber, J., H. O. Fabritius, E. Griesshaber & A. Ziegler, 2014. Function-related adaptations of ultrastructure, mineral phase distribution and mechanical properties in the incisive cuticle of mandibles of Porcellio scaber Latreille, 1804. Journal of Structural Biology 188(1): 1–15.

    CAS  Article  Google Scholar 

  29. Iijima, M., T. Hashimoto, Y. Matsuda, T. Nagai, Y. Yamano, T. Ichi, T. Osaki & S. I. Kawabata, 2005. Comprehensive sequence analysis of horseshoe crab cuticular proteins and their involvement in transglutaminase-dependent cross-linking. The FEBS Journal 272(18): 4774–4786.

    CAS  Article  Google Scholar 

  30. Inoue, H., N. Yuasa-Hashimoto, M. Suzuki & H. Nagasawa, 2008. Structural determination and functional analysis of a soluble matrix protein associated with calcification of the exoskeleton of the crayfish, Procambarus clarkii. Bioscience, Biotechnology, and Biochemistry 72(10): 2697–2707.

    CAS  Article  Google Scholar 

  31. Ishii, K., T. Yanagisawa & H. Nagasawa, 1996. Characterization of a matrix protein in the gastroliths of the crayfish Procambarus clarkii. Bioscience, Biotechnology, and Biochemistry 60(9): 1479–1482.

    CAS  Article  Google Scholar 

  32. Kragh, M., L. Molbak & S. O. Andersen, 1997. Cuticular proteins from the lobster, Homarus americanus. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 118(1): 147–154.

    CAS  Article  Google Scholar 

  33. Kuballa, A. V., D. J. Merritt & A. Elizur, 2007. Gene expression profiling of cuticular proteins across the moult cycle of the crab Portunus pelagicus. BMC Biology 5(1): 45.

    Article  Google Scholar 

  34. Lowenstam, H. A. & S. Weiner, 1989. On biomineralization. Oxford University Press, Oxford.

    Google Scholar 

  35. Luquet, G., 2012. Biomineralizations: insights and prospects from crustaceans. Zookeys 176: 103–121.

    Article  Google Scholar 

  36. Luquet, G., Y. Dauphin, A. Percot, M. Salome, A. Ziegler, M. S. Fernandez & J. L. Arias, 2016. Calcium deposits in the crayfish, Cherax quadricarinatus: microstructure versus elemental distribution. Microscopy and Microanalysis 22(1): 22–38.

    CAS  Article  Google Scholar 

  37. Marin, F., G. Luquet, B. Marie & D. Medakovic, 2007. Molluscan shell proteins: primary structure, origin, and evolution. Current Topics in Developmental Biology 80: 209–276.

    Article  Google Scholar 

  38. Marsh, J. J. & H. G. Lebherz, 1992. Fructose-bisphosphate aldolases: an evolutionary history. Trends in Biochemical Sciences 17(3): 110–113.

    CAS  Article  Google Scholar 

  39. Merzendorfer, H. & L. Zimoch, 2003. Chitin metabolism in insects: structure, function and regulation of chitin synthases and chitinases. Journal of Experimental Biology 206(Pt 24): 4393–4412.

    CAS  Article  Google Scholar 

  40. Patino, M. G., M. E. Neiders, S. Andreana, B. Noble & R. E. Cohen, 2002. Collagen: an overview. Implant Dent 11(3): 280–285.

    Article  Google Scholar 

  41. Pesch, Y. Y., D. Riedel & M. Behr, 2015. Obstructor a organizes matrix assembly at the apical cell surface to promote enzymatic cuticle maturation in drosophila. Journal of Biological Chemistry 290(16): 10071–10082.

    CAS  Article  Google Scholar 

  42. Petersen, T. N., S. Brunak, G. von Heijne & H. Nielsen, 2011. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nature Methods 8(10): 785–786.

    CAS  Article  Google Scholar 

  43. Rebers, J. E. & L. M. Riddiford, 1988. Structure and expression of a Manduca sexta larval cuticle gene homologous to Drosophila cuticle genes. Journal of Molecular Biology 203(2): 411–423.

    CAS  Article  Google Scholar 

  44. Rebers, J. E. & J. H. Willis, 2001. A conserved domain in arthropod cuticular proteins binds chitin. Insect Biochemistry and Molecular Biology 31(11): 1083–1093.

    CAS  Article  Google Scholar 

  45. Ringli, C., B. Keller & U. Ryser, 2001. Glycine-rich proteins as structural components of plant cell walls. Cellular and Molecular Life Sciences 58(10): 1430–1441.

    CAS  Article  Google Scholar 

  46. Roer, R. & R. Dillaman, 1984. The structure and calcification of the crustacean cuticle. American Zoologist 24(4): 893–909.

    CAS  Article  Google Scholar 

  47. Roer, R., S. Abehsera & A. Sagi, 2015. Exoskeletons across the Pancrustacea: comparative morphology, physiology, biochemistry and genetics. Integrative and Comparative Biology 55(5): 771–791.

    Article  Google Scholar 

  48. Roth, Z., S. Parnes, S. Wiel, A. Sagi, N. Zmora, J. S. Chung & I. Khalaila, 2010. N-glycan moieties of the crustacean egg yolk protein and their glycosylation sites. Glycoconjugate Journal 27(1): 159–169.

    CAS  Article  Google Scholar 

  49. Sato, A., S. Nagasaka, K. Furihata, S. Nagata, I. Arai, K. Saruwatari, T. Kogure, S. Sakuda & H. Nagasawa, 2011. Glycolytic intermediates induce amorphous calcium carbonate formation in crustaceans. Nature Chemical Biology 7(4): 197–199.

    CAS  Article  Google Scholar 

  50. Shechter, A., M. Tom, Y. Yudkovski, S. Weil, S. A. Chang, E. S. Chang, V. Chalifa-Caspi, A. Berman & A. Sagi, 2007. Search for hepatopancreatic ecdysteroid-responsive genes during the crayfish molt cycle: from a single gene to multigenicity. Journal of Experimental Biology 210(Pt 20): 3525–3537.

    CAS  Article  Google Scholar 

  51. Shechter, A., A. Berman, A. Singer, A. Freiman, M. Grinstein, J. Erez, E. D. Aflalo & A. Sagi, 2008a. Reciprocal changes in calcification of the gastrolith and cuticle during the molt cycle of the red claw crayfish Cherax quadricarinatus. The Biological Bulletin 214(2): 122–134.

    CAS  Article  Google Scholar 

  52. Shechter, A., L. Glazer, S. Cheled, E. Mor, S. Weil, A. Berman, S. Bentov, E. D. Aflalo, I. Khalaila & A. Sagi, 2008b. A gastrolith protein serving a dual role in the formation of an amorphous mineral containing extracellular matrix. Proceedings of the National Academy of Sciences United States of America 105(20): 7129–7134.

    CAS  Article  Google Scholar 

  53. Shechter, A., L. Glazer, S. Cheled, E. Mor, S. Weil, A. Berman, S. Bentov, E. D. Aflalo, I. Khalaila & A. Sagi, 2008c. A gastrolith protein serving a dual role in the formation of an amorphous mineral containing extracellular matrix. Proceedings of the National Academy of Sciences of the United States of America 105(20): 7129–7134.

    CAS  Article  Google Scholar 

  54. Shibata, T., S. Ariki, N. Shinzawa, R. Miyaji, H. Suyama, M. Sako, N. Inomata, T. Koshiba, H. Kanuka & S. Kawabata, 2010. Protein crosslinking by transglutaminase controls cuticle morphogenesis in Drosophila. PLoS ONE 5(10): e13477.

    Article  Google Scholar 

  55. Simkiss, K. & K. M. Wilbur, 2012. Biomineralization. Elsevier, Amsterdam.

    Google Scholar 

  56. Tellam, R. L., T. Vuocolo, S. E. Johnson, J. Jarmey & R. D. Pearson, 2000. Insect chitin synthase cDNA sequence, gene organization and expression. European Journal of Biochemistry 267(19): 6025–6043.

    CAS  Article  Google Scholar 

  57. Travis, D. F., 1963. The deposition of skeletal structures in the crustacea. 2. The histochemical changes associated with the development of the nonmineralized skeletal components of the gastrolith discs of the crayfish, Orconectes virilis hagen. Acta Histochemica 15: 251–268.

    CAS  PubMed  Google Scholar 

  58. Tweedie, E. P., F. E. Coblentz & T. H. Shafer, 2004. Purification of a soluble glycoprotein from the uncalcified ecdysial cuticle of the blue crab Callinectes sapidus and its possible role in initial mineralization. Journal of Experimental Biology 207(Pt 15): 2589–2598.

    CAS  Article  Google Scholar 

  59. Tynyakov, J., S. Bentov, S. Abehsera, I. Khalaila, R. Manor, A. L. Katzir, S. Weil, E. Aflalo & A. Sagi, 2015a. A novel chitin binding crayfish molar tooth protein with elasticity properties. PLoS ONE 10(5): e0127871.

    Article  Google Scholar 

  60. Tynyakov, J., S. Bentov, S. Abehsera, G. Yehezkel, Z. Roth, I. Khalaila, S. Weil, A. Berman, I. Plaschkes, M. Tom, E. D. Aflalo & A. Sagi, 2015b. A crayfish molar tooth protein with putative mineralized exoskeletal chitinous matrix properties. Journal of Experimental Biology 218(Pt 21): 3487–3498.

    Article  Google Scholar 

  61. Tynyakov, J., S. Bentov, S. Abehsera, G. Yehezkel, Z. Roth, I. Khalaila, S. Weil, A. Berman, I. Plaschkes, M. Tom, E. D. Aflalo & A. Sagi, 2015c. A crayfish molar tooth protein with putative mineralized exoskeletal chitinous matrix properties. Journal of Experimental Biology 218(Pt 21): 3487–3498.

    Article  Google Scholar 

  62. Ueno, M., 1980. Calcium transport in crayfish gastrolith disc: morphology of gastrolith disc and ultrahistochemical demonstration of calcium. Journal of Experimental Zoology 213(2): 161–171.

    CAS  Article  Google Scholar 

  63. Ueno, M. & V. Mizuhira, 1984. Calcium transport mechanism in crayfish gastrolith epithelium correlated with the molting cycle. II. Cytochemical demonstration of Ca2+-ATPase and Mg2+ -ATPase. Histochemistry 80(3): 213–217.

    CAS  Article  Google Scholar 

  64. Vatcher, H. E., R. D. Roer & R. M. Dillaman, 2015. Structure, molting, and mineralization of the dorsal ossicle complex in the gastric mill of the blue crab, Callinectes sapidus. Journal of Morphology 276(11): 1358–1367.

    CAS  Article  Google Scholar 

  65. Vincent, K. & M. C. Durrant, 2013. A structural and functional model for human bone sialoprotein. Journal of Molecular Graphics and Modelling 39: 108–117.

    CAS  Article  Google Scholar 

  66. Vuzman, D. & Y. Levy, 2012. Intrinsically disordered regions as affinity tuners in protein-DNA interactions. Molecular BioSystems 8(1): 47–57.

    CAS  Article  Google Scholar 

  67. Weiner, S. & P. M. Dove, 2003. An overview of biomineralization processes and the problem of the vital effect. Reviews in Mineralogy and Geochemistry 54(1): 1–29.

    CAS  Article  Google Scholar 

  68. Welinder, B. S., 1974. The crustacean cuticle – I. Studies on the composition of the cuticle. Comparative Biochemistry and Physiology Part A, Physiology 47(2): 779–787.

    CAS  Article  Google Scholar 

  69. Wynn, A. & T. H. Shafer, 2005. Four differentially expressed cDNAs in Callinectes sapidus containing the Rebers-Riddiford consensus sequence. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 141(3): 294–306.

    Article  Google Scholar 

  70. Yan, Z., Z. Fang, Z. Ma, J. Deng, S. Li, L. Xie & R. Zhang, 2007. Biomineralization: functions of calmodulin-like protein in the shell formation of pearl oyster. Biochimica et Biophysica Acta 1770(9): 1338–1344.

    CAS  Article  Google Scholar 

  71. Zhong, Y. S., K. Mita, T. Shimada & H. Kawasaki, 2006. Glycine-rich protein genes, which encode a major component of the cuticle, have different developmental profiles from other cuticle protein genes in Bombyx mori. Insect Biochemistry and Molecular Biology 36(2): 99–110.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Israel Science Foundation (Grant No. 613/13) and the National Institute for Biotechnology in the Negev (NIBN).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Amir Sagi.

Additional information

Guest editors: Guiomar Rotllant, Ferran Palero, Peter Mather, Heather Bracken-Grissom & Begoña Santos / Crustacean Genomics

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 16 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Abehsera, S., Weil, S., Manor, R. et al. The search for proteins involved in the formation of crustacean cuticular structures. Hydrobiologia 825, 29–45 (2018). https://doi.org/10.1007/s10750-018-3684-y

Download citation

Keywords

  • Chitinous scaffold
  • Crustacean cuticle
  • Extracellular matrix
  • Molt cycle
  • Structural proteins
  • Transcript binary patterning