Skip to main content
Log in

Phylogenetic annotation and genomic architecture of opsin genes in Crustacea

  • CRUSTACEAN GENOMICS
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

A major goal of evolutionary biology is to understand the role of adaptive processes on sensory systems. Visual capabilities are strongly influenced by environmental and ecological conditions, and the evolutionary advantages of vision are manifest by its complexity and ubiquity throughout Metazoa. Crustaceans occupy a vast array of habitats and ecological niches, and are thus ideal taxa to investigate the evolution of visual systems. A comparative approach is taken here for efficient identification and classification of opsin genes, photoreceptive pigment proteins involved in color vision, focusing on two crustacean model organisms: Hyalella azteca and Daphnia pulex. Transcriptomes of both species were assembled de novo to elucidate the diversity and function of expressed opsins within a robust phylogenetic context. For this purpose, we developed a modified version of the Phylogenetically Informed Annotation tool’s pipeline to filter and identify visual genes from transcriptomes in a scalable and efficient manner. In addition, reference genomes of these species were used to validate our pipeline while characterizing the genomic architecture of the opsin genes. Next-generation sequencing and phylogenetics provide future venues for the study of sensory systems, adaptation, and evolution in model and nonmodel organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Afgan, E., D. Baker, M. van den Beek, D. Blankenberg, D. Bouvier, M. Čech, J. Chilton, D. Clements, N. Coraor, C. Eberhard, B. Grüning, A. Guerler, J. Hillman-Jackson, G. Von Kuster, E. Rasche, N. Soranzo, N. Turaga, J. Taylor, A. Nekrutenko & J. Goecks, 2016. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2016 update. Nucleic Acids Research 44: W3–W10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Altschul, S. F., W. Gish, W. Miller, E. W. Myers & D. J. Lipman, 1990. Basic local alignment search tool. Journal of Molecular Biology 215: 403–410.

    Article  CAS  PubMed  Google Scholar 

  • Andrews, S., 2010. FastQC A Quality Control tool for High Throughput Sequence Data. [available on internet at http://www.bioinformatics.babraham.ac.uk/projects/fastqc/]

  • Anisimova, M., M. Gil, J.-F. Dufayard, C. Dessimoz & O. Gascuel, 2011. Survey of Branch Support Methods Demonstrates Accuracy, Power, and Robustness of Fast Likelihood-based Approximation Schemes. Systematic Biology 60: 685–699.

    Article  PubMed  PubMed Central  Google Scholar 

  • Arendt, D., K. Tessmar, M.-I. M. de Campos-Baptista, A. Dorresteijn & J. Wittbrodt, 2002. Development of pigment-cup eyes in the polychaete Platynereis dumerilii and evolutionary conservation of larval eyes in Bilateria. Development 129: 1143–1154.

    Article  CAS  PubMed  Google Scholar 

  • Arendt, D., K. Tessmar-Raible, H. Snyman, A. W. Dorresteijn & J. Wittbrodt, 2004. Ciliary photoreceptors with a vertebrate-type opsin in an invertebrate brain. Science 306: 869–871.

    Article  CAS  PubMed  Google Scholar 

  • Betrán, E. & M. Long, 2002. Expansion of genome coding regions by acquisition of new genes. Genetica 115: 65–80.

    Article  PubMed  Google Scholar 

  • Biscontin, A., E. Frigato, G. Sales, G. M. Mazzotta, M. Teschke, C. De Pittà, S. Jarman, B. Meyer, R. Costa & C. Bertolucci, 2016. The opsin repertoire of the Antarctic krill Euphausia superba. Marine Genomics 29: 61–68.

    Article  PubMed  Google Scholar 

  • Bok, M. J., M. L. Porter & D.-E. Nilsson, 2017. Phototransduction in fan worm radiolar eyes. Current Biology 27: R681–R701.

    Article  CAS  Google Scholar 

  • Bolger, A. M., M. Lohse & B. Usadel, 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30: 2114–2120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brandon, C. S., M. J. Greenwold & J. L. Dudycha, 2017. Ancient and recent duplications support functional diversity of Daphnia opsins. Journal of Molecular Evolution 84: 12–28.

    Article  CAS  PubMed  Google Scholar 

  • Briscoe, A. D., S. M. Bybee, G. D. Bernard, F. Yuan, M. P. Sison-Mangus, R. D. Reed, A. D. Warren, J. Llorente-Bousquets & C.-C. Chiao, 2010. Positive selection of a duplicated UV-sensitive visual pigment coincides with wing pigment evolution in Heliconius butterflies. Proceedings of the National Academy of Sciences 107: 3628–3633.

    Article  Google Scholar 

  • Cock, P. J. A., T. Antao, J. T. Chang, B. A. Chapman, C. J. Cox, A. Dalke, I. Friedberg, T. Hamelryck, F. Kauff, B. Wilczynski & M. J. L. de Hoon, 2009. Biopython: freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics 25: 1422–1423.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colbourne, J. K., M. E. Pfrender, D. Gilbert, W. K. Thomas, A. Tucker, T. H. Oakley, S. Tokishita, A. Aerts, G. J. Arnold, M. K. Basu, D. J. Bauer, C. E. Caceres, L. Carmel, C. Casola, J.-H. Choi, J. C. Detter, Q. Dong, S. Dusheyko, B. D. Eads, T. Frohlich, K. A. Geiler-Samerotte, D. Gerlach, P. Hatcher, S. Jogdeo, J. Krijgsveld, E. V. Kriventseva, D. Kultz, C. Laforsch, E. Lindquist, J. Lopez, J. R. Manak, J. Muller, J. Pangilinan, R. P. Patwardhan, S. Pitluck, E. J. Pritham, A. Rechtsteiner, M. Rho, I. B. Rogozin, O. Sakarya, A. Salamov, S. Schaack, H. Shapiro, Y. Shiga, C. Skalitzky, Z. Smith, A. Souvorov, W. Sung, Z. Tang, D. Tsuchiya, H. Tu, H. Vos, M. Wang, Y. I. Wolf, H. Yamagata, T. Yamada, Y. Ye, J. R. Shaw, J. Andrews, T. J. Crease, H. Tang, S. M. Lucas, H. M. Robertson, P. Bork, E. V. Koonin, E. M. Zdobnov, I. V. Grigoriev, M. Lynch & J. L. Boore, 2011. The ecoresponsive genome of Daphnia pulex. Science 331: 555–561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crisp, M. & L. Cook, 2005. Do early branching lineages signify ancestral traits? Trends in Ecology & Evolution 20: 122–128.

    Article  Google Scholar 

  • Eddy, S. R., 2011. Accelerated Profile HMM Searches. PLoS computational biology 7: e1002195–e1002195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edgar, R. C., 2010. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26: 2460–2461.

    Article  CAS  PubMed  Google Scholar 

  • Engelhardt, B. E., M. I. Jordan, S. T. Repo & S. E. Brenner, 2009. Phylogenetic molecular function annotation. Journal of Physics: Conference Series 180: 012024.

    Google Scholar 

  • Feuda, R., O. Rota-Stabelli, T. H. Oakley & D. Pisani, 2014. The Comb Jelly Opsins and the Origins of Animal Phototransduction. Genome Biology and Evolution 6: 1964–1971.Feuda, R., F. Marlétaz, M. A. Bentley, P. W.H. Holland, 2016. Conservation, Duplication, and Divergence of Five Opsin Genes in Insect Evolution. Genome Biology and Evolution 8: 579–587.

    Article  CAS  Google Scholar 

  • Fitzgibbon, J., A. Hope, S. J. Slobodyanyuk, J. Bellingham, J. K. Bowmaker & D. M. Hunt, 1995. The rhodopsin-encoding gene of bony fish lacks introns. Gene 164: 273–277.

    Article  CAS  PubMed  Google Scholar 

  • Freese, N. H., D. C. Norris & A. E. Loraine, 2016. Integrated genome browser: visual analytics platform for genomics. Bioinformatics 32: 2089–2095.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frentiu, F. D., G. D. Bernard, M. P. Sison-Mangus, A. Van Zandt Brower & A. D. Briscoe, 2007. Gene duplication is an evolutionary mechanism for expanding spectral diversity in the long-wavelength photopigments of butterflies. Molecular Biology and Evolution 24: 2016–2028.

    Article  CAS  PubMed  Google Scholar 

  • Fryxel, K. J. & E. M. Meyerowitz, 1991. The evolution of rhodopsins and neurotransmitter receptors. Journal of Molecular Evolution 33: 367–378.

    Article  Google Scholar 

  • Gaudet, P., M. S. Livstone, S. E. Lewis & P. D. Thomas, 2011. Phylogenetic-based propagation of functional annotations within the Gene Ontology consortium. Briefings in Bioinformatics 12: 449–462.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gonzalez, E. R. & L. Watling, 2002. Redescription of Hyalella azteca from Its type locality, Vera Cruz, Mexico (Amphipoda:Hyalellidae). Journal of Crustacean Biology 22: 173–183.

    Article  Google Scholar 

  • Grabherr, M. G., B. J. Haas, M. Yassour, J. Z. Levin, D. a Thompson, I. Amit, X. Adiconis, L. Fan, R. Raychowdhury, Q. Zeng, Z. Chen, E. Mauceli, N. Hacohen, A. Gnirke, N. Rhind, F. di Palma, B. W. Birren, C. Nusbaum, K. Lindblad-Toh, N. Friedman, & A. Regev, 2011. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology 29: 644–652.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gühmann, M., H. Jia, N. Randel, C. Verasztó, L. A. Bezares-Calderón, N. K. Michiels, S. Yokoyama & G. Jékely, 2015. Spectral Tuning of Phototaxis by a Go-Opsin in the Rhabdomeric Eyes of Platynereis. Current Biology 25: 2265–2271.

    Article  PubMed  CAS  Google Scholar 

  • Guindon, S., J.-F. Dufayard, V. Lefort, M. Anisimova, W. Hordijk & O. Gascuel, 2010. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Systematic Biology 59: 307–321.

    Article  CAS  PubMed  Google Scholar 

  • Haas, B. J., A. Papanicolaou, M. Yassour, M. Grabherr, P. D. Blood, J. Bowden, M. B. Couger, D. Eccles, B. Li, M. Lieber, M. D. Macmanes, M. Ott, J. Orvis, N. Pochet, F. Strozzi, N. Weeks, R. Westerman, T. William, C. N. Dewey, R. Henschel, R. D. Leduc, N. Friedman & A. Regev, 2013. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nature Protocols 8: 1494–1512.

    Article  CAS  PubMed  Google Scholar 

  • Henze, M. J. & T. H. Oakley, 2015. The Dynamic Evolutionary History of Pancrustacean Eyes and Opsins. Integrative and Comparative Biology 55: 830–842.

    Article  PubMed  Google Scholar 

  • Hering, L. & G. Mayer, 2014. Analysis of the opsin repertoire in the tardigrade hypsibius dujardini provides insights into the evolution of opsin genes in panarthropoda. Genome Biology and Evolution 6: 2380–2391.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Imai, H., D. Kojima, T. Oura, S. Tachibanaki, A. Terakita & Y. Shichida, 1997. Single amino acid residue as a functional determinant of rod and cone visual pigments. Proceedings of the National Academy of Sciences 94: 2322–2326.

    Article  CAS  Google Scholar 

  • Isoldi, M. C., M. D. Rollag, A. M. de Lauro Castrucci & I. Provencio, 2005. Rhabdomeric phototransduction initiated by the vertebrate photopigment melanopsin. Proceedings of the National Academy of Sciences 102: 1217–1221.

    Article  CAS  Google Scholar 

  • Kalyaanamoorthy, S., B. Q. Minh, T. K. F. Wong, A. von Haeseler & L. S. Jermiin, 2017. ModelFinder: fast model selection for accurate phylogenetic estimates. Nature Methods 14: 587–589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kashiyama, K., T. Seki, H. Numata & S. G. Goto, 2009. Molecular characterization of visual pigments in branchiopoda and the evolution of opsins in arthropoda. Molecular Biology and Evolution 26: 299–311.

    Article  CAS  PubMed  Google Scholar 

  • Katti, C., K. Kempler, M. L. Porter, A. Legg, R. Gonzalez, E. Garcia-Rivera, D. Dugger & B.-A. Battelle, 2010. Opsin co-expression in Limulus photoreceptors: differential regulation by light and a circadian clock. Journal of Experimental Biology 213: 2589–2601.

    Article  CAS  Google Scholar 

  • Kim, D., B. Langmead & S. L. Salzberg, 2010. HISAT: a fast spliced aligner with low memory requirements. Nature Methods 12: 357–360.

    Article  CAS  Google Scholar 

  • Kim, B.-M., S. Kang, D.-H. Ahn, J.-H. Kim, I. Ahn, C.-W. Lee, J.-L. Cho, G.-S. Min & H. Park, 2017. First insights into the subterranean crustacean Bathynellacea transcriptome: transcriptionally reduced opsin repertoire and evidence of conserved homeostasis regulatory mechanisms. PloS One 12: e0170424.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kojima, D., A. Terakita, T. Ishikawa, Y. Tsukahara, A. Maeda & Y. Shichida, 1997. A novel Go-mediated phototransduction cascade in scallop visual cells. Journal of Biological Chemistry 272: 22979–22982.

    Article  CAS  Google Scholar 

  • Kondrashov, F. A., I. B. Rogozin, Y. I. Wolf, & E. V. Koonin, 2002. Selection in the evolution of gene duplications. Genome Biology 3: research0008–1.

    Article  Google Scholar 

  • Krogh, A., M. Brown, I. S. Mian, K. Sjolander & D. Haussler, 1994. Hidden Markov Models in Computational Biology. Molecular Biology 235: 1501–1531.

    Article  CAS  Google Scholar 

  • Kuwayama, S., H. Imai, T. Hirano, A. Terakita & Y. Shichida, 2002. Conserved Proline Residue at Position 189 in Cone Visual Pigments as a Determinant of Molecular Properties Different from Rhodopsins. Biochemistry 41: 15245–15252.

    Article  CAS  PubMed  Google Scholar 

  • Lampel, J., A. D. Briscoe & L. T. Wasserthal, 2005. Expression of UV-, blue-, long-wavelength-sensitive opsins and melatonin in extraretinal photoreceptors of the optic lobes of hawkmoths. Cell and Tissue Research 321: 443–458.

    Article  PubMed  Google Scholar 

  • Le, S. Q. & O. Gascuel, 2008. An Improved General Amino Acid Replacement Matrix. Molecular Biology and Evolution 25: 1307–1320.

    Article  CAS  PubMed  Google Scholar 

  • Liegertová, M., J. Pergner, I. Kozmiková, P. Fabian, A. R. Pombinho, H. Strnad, J. Pačes, Č. Vlček, P. Bartůněk & Z. Kozmik, 2015. Cubozoan genome illuminates functional diversification of opsins and photoreceptor evolution. Scientific Reports 5: 11885.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lynch, M. & A. Force, 1999. The Probability of Duplicate Gene Preservation by Subfunctionalization. Genetics 154: 459–473.

    Article  Google Scholar 

  • Marshall, J., K. L. Carleton & T. Cronin, 2015. Colour vision in marine organisms. Current Opinion in Neurobiology 34: 86–94.

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto, T. & Y. Ishibashi, 2016. Sequence analysis and expression patterns of opsin genes in the longtooth grouper Epinephelus bruneus. Fisheries Science 82: 17–27.

    Article  CAS  Google Scholar 

  • Menzel, R., 1979. Spectral Sensitivity and Color Vision in Invertebrates In Autrum, H. (ed), Comparative Physiology and Evolution of Vision in Invertebrates. Springer Berlin Heidelberg, Berlin, Heidelberg: 503–580.

    Chapter  Google Scholar 

  • Minh, B. Q., M. A. T. Nguyen & A. von Haeseler, 2013. Ultrafast Approximation for Phylogenetic Bootstrap. Molecular Biology and Evolution 30: 1188–1195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mirdita, M., L. von den Driesch, C. Galiez, M. J. Martin, J. Söding & M. Steinegger, 2017. Uniclust databases of clustered and deeply annotated protein sequences and alignments. Nucleic Acids Research 45: D170–D176.

    Article  CAS  PubMed  Google Scholar 

  • Mirzadegan, T., G. Benkö, S. Filipek & K. Palczewski, 2003. Sequence Analyses of G-Protein-Coupled Receptors: Similarities to Rhodopsin. Biochemistry 42: 2759–2767.

    Article  CAS  PubMed  Google Scholar 

  • Morris, A., J. K. Bowmaker & D. M. Hunt, 1993. The molecular basis of a spectral shift in the rhodopsins of two species of squid from different photic environments. Proceedings of the Royal Society B: Biological Sciences 254: 233–240.

    Article  CAS  PubMed  Google Scholar 

  • Nathans, J., 1987. Molecular biology of visual pigments. Annual review of neuroscience 10: 163–194.

    Article  CAS  PubMed  Google Scholar 

  • Nguyen, L.-T., H. A. Schmidt, A. von Haeseler & B. Q. Minh, 2015. IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies. Molecular Biology and Evolution 32: 268–274.

    Article  CAS  PubMed  Google Scholar 

  • Nordström, K., T. A. Larsson & D. Larhammar, 2004. Extensive duplications of phototransduction genes in early vertebrate evolution correlate with block (chromosome) duplications. Genomics 83: 852–872.

    Article  PubMed  CAS  Google Scholar 

  • Oakley, T. H. & D. R. Huber, 2004. Differential Expression of Duplicated Opsin Genes in Two EyeTypes of Ostracod Crustaceans. Journal of Molecular Evolution 59: 239–249.

    Article  CAS  PubMed  Google Scholar 

  • Oakley, T. H., M. A. Alexandrou, R. Ngo, M. S. Pankey, C. K. Churchill, W. Chen & K. B. Lopker, 2014. Osiris: accessible and reproducible phylogenetic and phylogenomic analyses within the Galaxy workflow management system. BMC Bioinformatics 15: 230.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ohno, S., 1970. Evolution by gene duplication. George Allen and Unwin, London.

    Book  Google Scholar 

  • Panda, S., S. K. Nayak, B. Campo, J. R. Walker, J. B. Hogenesch & T. Jegla, 2005. Illumination of the Melanopsin Signaling Pathway. Science 307: 600–604.

    Article  CAS  PubMed  Google Scholar 

  • Passamaneck, Y. J., N. Furchheim, A. Hejnol, M. Q. Martindale & C. Lüter, 2011. Ciliary photoreceptors in the cerebral eyes of a protostome larva. EvoDevo 2: 6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pearson, W. R., 2013. An Introduction to Sequence Similarity (“Homology”) Searching In Baxevanis, A. D., G. A. Petsko, L. D. Stein, & G. D. Stormo (eds), Current Protocols in Bioinformatics. Wiley, Hoboken.

  • Pegueroles, C., S. Laurie & M. M. Albà, 2013. Accelerated Evolution after Gene Duplication: A Time-Dependent Process Affecting Just One Copy. Molecular Biology and Evolution 30: 1830–1842.

    Article  CAS  PubMed  Google Scholar 

  • Porter, M. L., T. W. Cronin, D. A. McClellan & K. A. Crandall, 2007. Molecular Characterization of Crustacean Visual Pigments and the Evolution of Pancrustacean Opsins. Molecular Biology and Evolution 24: 253–268.

    Article  CAS  PubMed  Google Scholar 

  • Porter, M. L., M. J. Bok, P. R. Robinson & T. W. Cronin, 2009. Molecular diversity of visual pigments in Stomatopoda (Crustacea). Visual Neuroscience 26: 255–265.

    Article  PubMed  Google Scholar 

  • Porter, M. L., J. R. Blasic, M. J. Bok, E. G. Cameron, T. Pringle, T. W. Cronin & P. R. Robinson, 2012. Shedding new light on opsin evolution. Proceedings of the Royal Society B: Biological Sciences 279: 3–14.

    Article  PubMed  Google Scholar 

  • Porter, M. L., D. I. Speiser, A. K. Zaharoff, R. L. Caldwell, T. W. Cronin & T. H. Oakley, 2013. The Evolution of Complexity in the Visual Systems of Stomatopods: Insights from Transcriptomics. Integrative and Comparative Biology 53: 39–49.

    Article  CAS  PubMed  Google Scholar 

  • Provencio, I., G. Jiang, W. J. De Grip, W. PÄR HAYES, & M. D. Rollag, 1998. Melanopsin: An opsin in melanophores, brain, and eye. Proceedings of the National Academy of Sciences of the United States of America 95: 340–345.

    Article  CAS  Google Scholar 

  • Provencio, I., I. R. Rodriguez, G. Jiang, W. P. Hayes, E. F. Moreira & M. D. Rollag, 2000. A novel human opsin in the inner retina. Journal of Neuroscience 20: 600–605.

    Article  CAS  PubMed  Google Scholar 

  • Qiu, X., T. Kumbalasiri, S. M. Carlson, K. Y. Wong, V. Krishna, I. Provencio & D. M. Berson, 2005. Induction of photosensitivity by heterologous expression of melanopsin. Nature 433: 745–749.

    Article  CAS  PubMed  Google Scholar 

  • Ramirez, M. D., A. N. Pairett, M. S. Pankey, J. M. Serb, D. I. Speiser, A. J. Swafford & T. H. Oakley, 2016. The Last Common Ancestor of Most Bilaterian Animals Possessed at Least Nine Opsins. Genome Biology and Evolution 8: 3640–3652.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rasmussen, T. K. & T. Krink, 2003. Improved Hidden Markov Model training for multiple sequence alignment by a particle swarm optimization—evolutionary algorithm hybrid. Biosystems 72: 5–17.

    Article  CAS  PubMed  Google Scholar 

  • Remmert, M., A. Biegert, A. Hauser & J. Söding, 2012. HHblits: lightning-fast iterative protein sequence searching by HMM-HMM alignment. Nature Methods 9: 173–175.

    Article  CAS  Google Scholar 

  • Sakamoto, K., O. Hisatomi, F. Tokunaga & E. Eguchi, 1996. Two opsins from the compound eye of the crab Hemigrapsus sanguineus. Journal of Experimental Biology 199: 441–450.

    Article  CAS  Google Scholar 

  • Shichida, Y. & T. Matsuyama, 2009. Evolution of opsins and phototransduction. Philosophical Transactions of the Royal Society B: Biological Sciences 364: 2881–2895.

    Article  CAS  Google Scholar 

  • Simão, F. A., R. M. Waterhouse, P. Ioannidis, E. V. Kriventseva & E. M. Zdobnov, 2015. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31: 3210–3212.

    Article  CAS  PubMed  Google Scholar 

  • Sjölander, K., 2004. Phylogenomic inference of protein molecular function: advances and challenges. Bioinformatics 20: 170–179.

    Article  PubMed  Google Scholar 

  • Smith-Unna, R., C. Boursnell, R. Patro, J. M. Hibberd & S. Kelly, 2016. TransRate: reference-free quality assessment of de novo transcriptome assemblies. Genome Research 26: 1134–1144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soubrier, J., M. Steel, M. S. Y. Lee, C. Der Sarkissian, S. Guindon, S. Y. W. Ho & A. Cooper, 2012. The Influence of Rate Heterogeneity among Sites on the Time Dependence of Molecular Rates. Molecular Biology and Evolution 29: 3345–3358.

    Article  CAS  PubMed  Google Scholar 

  • Speiser, D. I., M. Pankey, A. K. Zaharoff, B. a Battelle, H. D. Bracken-Grissom, J. W. Breinholt, S. M. Bybee, T. W. Cronin, A. Garm, A. R. Lindgren, N. H. Patel, M. L. Porter, M. E. Protas, A. S. Rivera, J. M. Serb, K. S. Zigler, K. a Crandall, & T. H. Oakley, 2014. Using phylogenetically-informed annotation (PIA) to search for light-interacting genes in transcriptomes from non-model organisms. BMC Bioinformatics 15: 350–350.

  • Stamatakis, A., 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30: 1312–1313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stieb, S. M., F. Cortesi, L. Sueess, K. L. Carleton, W. Salzburger & N. J. Marshall, 2017. Why UV vision and red vision are important for damselfish (Pomacentridae): structural and expression variation in opsin genes. Molecular Ecology 26: 1323–1342.

    Article  CAS  PubMed  Google Scholar 

  • Suzuki, S., T. Ishida, K. Kurokawa & Y. Akiyama, 2012. GHOSTM: A GPU-Accelerated Homology Search Tool for Metagenomics. PLoS ONE 7: e36060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Terakita, A., 2005. The opsins. Genome biology 6: 213.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tong, D., N. S. Rozas, T. H. Oakley, J. Mitchell, N. J. Colley & M. J. McFall-Ngai, 2009. Evidence for light perception in a bioluminescent organ. Proceedings of the National Academy of Sciences 106: 9836–9841.

    Article  CAS  Google Scholar 

  • Tsukamoto, H., I.-S. Chen, Y. Kubo & Y. Furutani, 2017. A ciliary opsin in the brain of a marine annelid zooplankton is ultraviolet-sensitive, and the sensitivity is tuned by a single amino acid residue. Journal of Biological Chemistry 292: 12971–12980.

    Article  CAS  Google Scholar 

  • Tutar, Y., 2012. Pseudogenes. Comparative and Functional Genomics 2012: 1–4.

    Article  CAS  Google Scholar 

  • Waterhouse, R. M., F. Tegenfeldt, J. Li, E. M. Zdobnov & E. V. Kriventseva, 2013. OrthoDB: a hierarchical catalog of animal, fungal and bacterial orthologs. Nucleic Acids Research 41: D358–D365.

    Article  CAS  PubMed  Google Scholar 

  • Wen, Y.-Z., L.-L. Zheng, L.-H. Qu, F. J. Ayala & Z.-R. Lun, 2012. Pseudogenes are not pseudo any more. RNA Biology 9: 27–32.

    Article  PubMed  CAS  Google Scholar 

  • Wong, J. M., J. L. Pérez-Moreno, T.-Y. Chan, T. M. Frank & H. D. Bracken-Grissom, 2015. Phylogenetic and transcriptomic analyses reveal the evolution of bioluminescence and light detection in marine deep-sea shrimps of the family Oplophoridae (Crustacea: Decapoda). Molecular Phylogenetics and Evolution 83: 278–292.

    Article  CAS  PubMed  Google Scholar 

  • Xu, P., R. Feuda, B. Lu, H. Xiao, R. I. Graham & K. Wu, 2016. Functional opsin retrogene in nocturnal moth. Mobile DNA 7: 18.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yamada, K. D., K. Tomii & K. Katoh, 2016. Application of the MAFFT sequence alignment program to large data—reexamination of the usefulness of chained guide trees. Bioinformatics 32: 3246–3251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoon, B.-J., 2009. Hidden Markov models and their applications in biological sequence analysis. Current genomics 10: 402–415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, J., 2003. Evolution by gene duplication: an update. Trends in Ecology & Evolution 18: 292–298.

    Article  Google Scholar 

  • Zhou, X., X.-X. Shen, C. T. Hittinger, & A. Rokas, 2017. Evaluating Fast Maximum Likelihood-Based Phylogenetic Programs Using Empirical Phylogenomic Data Sets. bioRxiv 142323.

Download references

Acknowledgements

The authors would like to thank Megan Porter for access to her compilation of reference opsin data, Daniel Speiser and Todd Oakley for allowing us to modify the original PIA tool, and Katherine Dougan for advice during the preparation of this manuscript. JPM was supported by the Philip M. Smith Graduate Research Grant for Cave and Karst Research from the Cave Research Foundation, The Crustacean Society Scholarship in Graduate Studies, and Florida International University’s Dissertation Year Fellowship. This work was partially funded by two grants awarded from the National Science Foundation: Doctoral Dissertation Improvement Grant (#1701835) awarded to JPM and HBG, and the Division of Environmental Biology Bioluminescence and Vision grant (DEB-1556059) awarded to HBG. FP acknowledges project CHALLENGEN (CTM2013-48163) of the Spanish Government and a postdoctoral contract funded by the Beatriu de Pinos Programme of the Generalitat de Catalunya (2014-BPB-00038). The authors would like to thank the Instructional & Research Computing Center (IRCC) at Florida International University for providing High-Performance Computing resources that have contributed to the research results reported within this article. This is contribution #92 of the Marine Education and Research Center of the Institute for the Water and the Environment at the Florida International University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge L. Pérez-Moreno.

Additional information

Guest editors: Guiomar Rotllant, Ferran Palero, Peter Mather, Heather Bracken-Grissom & Begoña Santos / Crustacean Genomics

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pérez-Moreno, J.L., DeLeo, D.M., Palero, F. et al. Phylogenetic annotation and genomic architecture of opsin genes in Crustacea. Hydrobiologia 825, 159–175 (2018). https://doi.org/10.1007/s10750-018-3678-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-018-3678-9

Keywords

Navigation