Skip to main content

Advertisement

Log in

Relative roles of environmental and spatial constraints in assemblages of Chironomidae (Diptera) in Amazonian floodplain streams

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

We studied the diversity and abundance of Chironomidae assemblages according to the metacommunity framework, aiming to disentangle environmental and dispersal-driven processes in Amazonian streams. Because of the high heterogeneity in Amazonian landscapes and daily flood regimes connecting stream network, we tested if dispersal limitations play a smaller role than environmental variation in explaining variation in community composition. We investigated how community structure and species richness were affected by environmental variables, and how differences in geographic distance between streams best explain metacommunity patterns. We found remarkable environmental effects (i.e., species sorting) and low spatial contribution (i.e., dispersal limitation) on the metacommunity structure. Canopy density mid-stream, percentage of wood debris, and wetted width in streams were the main environmental factors for explaining community structure. Overall, we found only effects of broad-scale patterns in metacommunity structure explained by spatial filters. Community structure was most explained by Asymmetric eigenvector maps representing directional dispersion effects along the basin-scale and less explained by Moran’s eigenvectors maps suggesting that overland dispersal limitation has a weak role in ruling the assemblages. Our results support that without dispersal limitation, the combination of species sorting and mass effects is the main pattern structuring chironomid metacommunities between Amazonian floodplain streams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abdo, A.-S. S., C. S. Md Rawi, A. H. Ahmad & M. A. Rosmahanie Madrus, 2013. Biodiversity of stream insects in the Malaysian Peninsula: spatial patterns and environmental constraints. Ecological Entomology 38: 238–249.

    Article  Google Scholar 

  • Altermatt, F., 2013. Diversity in riverine metacommunities: a network perspective. Aquatic Ecology 47: 365–377.

    Article  Google Scholar 

  • Altermatt, F., M. Seymour & N. Martinez, 2013. River network properties shape α-diversity and community similarity patterns of aquatic insect communities across major drainage basins. Journal of Biogeography 40: 2249–2260.

    Article  Google Scholar 

  • Álvarez, M., P. H. Langton & I. Pardo, 2010. Chironomidae assemblages of temporary streams of the Mediterranean island of Majorca (Spain). Aquatic Insects 32: 113–128.

    Article  Google Scholar 

  • Anderson, M. J., 2001. A new method for non parametric multivariate analysis of variance. Austral Ecology 26: 32–46.

    Google Scholar 

  • Anderson, M. J. & D. C. I. Walsh, 2013. PERMANOVA, ANOSIM, and the Mantel test in the face of heterogeneous dispersions: what null hypothesis are you testing? Ecological Monographs 83: 557–574.

    Article  Google Scholar 

  • Árva, D., M. Tóth, H. Horváth, S. A. Nagy & A. Specziár, 2015. The relative importance of spatial and environmental processes in distribution of benthic chironomid larvae within a large and shallow lake. Hydrobiologia 742: 249–266.

    Article  CAS  Google Scholar 

  • Blanchet, F. G., P. Legendre & D. Borcard, 2008a. Modelling directional spatial processes in ecological data. Ecological Modelling 215: 325–336.

    Article  Google Scholar 

  • Blanchet, G., P. Legendre & D. Borcard, 2008b. Forward selection of spatial explanatory variables. Ecology 89: 2623–2632.

    Article  PubMed  Google Scholar 

  • Blanchet, F. G., P. Legendre, R. Maranger, D. Monti & P. Pepin, 2011. Modelling the effect of directional spatial ecological processes at different scales. Oecologia 166: 357–368.

    Article  PubMed  Google Scholar 

  • Blundo, C., L. R. Malizia & M. González-Espinosa, 2015. Distribution of functional traits in subtropical trees across environmental and forest use gradients. Acta Oecologica 69: 96–104.

    Article  Google Scholar 

  • Borcard, D., P. Legendre & P. Drapeau, 1992. Partialling out the spatial component of ecological variation. Ecology 73: 1045–1055.

    Article  Google Scholar 

  • Brown, B. L., 2007. Habitat heterogeneity and disturbance influence patterns of community temporal variability in a small temperate stream. Hydrobiologia 586: 93–106.

    Article  Google Scholar 

  • Brown, B. L. & C. M. Swan, 2010. Dendritic network structure constrains metacommunity properties in riverine ecosystems. Journal of Animal Ecology 79: 571–580.

    Article  PubMed  CAS  Google Scholar 

  • Brown, B. L., C. M. Swan, D. A. Auerbach, E. H. C. Grant, N. P. Hitt, K. O. Maloney & C. Patrick, 2011. Metacommunity theory as a multispecies, multiscale framework for studying the influence of river network structure on riverine communities and ecosystems. Journal of the North American Benthological Society 30: 310–327.

    Article  Google Scholar 

  • Brown, B. L., E. R. Sokol, J. Skelton & B. Tornwall, 2017. Making sense of metacommunities: dispelling the mythology of a metacommunity typology. Oecologia 183: 643–652.

    Article  PubMed  Google Scholar 

  • Campbell Grant, E. H., W. H. Lowe & W. F. Fagan, 2007. Living in the branches: population dynamics and ecological processes in dendritic networks. Ecology Letters 10: 165–175.

    Article  PubMed  Google Scholar 

  • Cañedo-Argüelles, M., K. S. Boersma, M. T. Bogan, J. D. Olden, I. Phillipsen, T. A. Schriever & D. A. Lytle, 2015. Dispersal strength determines meta-community structure in a dendritic riverine network. Journal of Biogeography 42: 778–790.

    Article  Google Scholar 

  • Capers, R. S., R. Selsky & G. J. Bugbee, 2010. The relative importance of local conditions and regional processes in structuring aquatic plant communities. Freshwater Biology 55: 952–966.

    Article  Google Scholar 

  • Castillo-Escrivà, A., J. Rueda, L. Zamora, R. Hernández, M. del Moral & F. Mesquita-Joanes, 2016. The role of watercourse versus overland dispersal and niche effects on ostracod distribution in Mediterranean streams (eastern Iberian Peninsula). Acta Oecologica 73: 1–9.

    Article  Google Scholar 

  • Cauvy-Fraunié, S., R. Espinosa, P. Andino, D. Jacobsen & O. Dangles, 2015. Invertebrate metacommunity structure and dynamics in an Andean glacial stream network facing climate change. PLoS ONE 10: e0136793.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chang, F.-H., J. E. Lawrence, B. Rios-Touma & V. H. Resh, 2014. Tolerance values of benthic macroinvertebrates for stream biomonitoring: assessment of assumptions underlying scoring systems worldwide. Environmental Monitoring and Assessment 186: 2135–2149.

    Article  PubMed  CAS  Google Scholar 

  • Chen, K., R. M. Hughes, J. G. Brito, C. G. Leal, R. P. Leitão, J. M. B. de Oliveira-Júnior, V. C. de Oliveira, K. Dias-Silva, S. F. B. Ferraz, J. Ferreira, N. Hamada, L. Juen, J. Nessimian, P. S. Pompeu & J. Zuanon, 2017. A multi-assemblage, multi-metric biological condition index for eastern Amazonia streams. Ecological Indicators 78: 48–61.

    Article  Google Scholar 

  • Costa, M. L., D. C. Kern, H. Behling & M. S. Borges, 2002. Geologia. In Lisboa, P. L. B. (ed), Caxiuanã: populações tradicionais, meio físico e diversidade biológica. Museu Paraense Emílio Goeldi, Belém: 179–205.

    Google Scholar 

  • da Monteiro, C., M. C. Esposito & L. Juen, 2016. Are the adult odonate species found in a protected area different from those present in the surrounding zone? A case study from eastern Amazonia. Journal of Insect Conservation 20: 643–652.

    Article  Google Scholar 

  • de Faria, A. P. J., R. Ligeiro, M. Callisto & L. Juen, 2017. Response of aquatic insect assemblages to the activities of traditional populations in eastern Amazonia. Hydrobiologia 802(1): 39–51.

    Article  CAS  Google Scholar 

  • De Oliveira, L. L., R. F. Da Costa, F. D. A. S. De Sousa, A. C. L. Da Costa & A. P. Braga, 2008. Precipitação efetiva e interceptação em Caxiuanã, na Amazônia Oriental. Acta Amazonica 38: 723–732.

    Article  Google Scholar 

  • Dray, S., P. Legendre & P. R. Peres-Neto, 2006. Spatial modelling: a comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM). Ecological Modelling 196: 483–493.

    Article  Google Scholar 

  • Dray, S., R. Pélissier, P. Couteron, M. J. Fortin, P. Legendre, P. R. Peres-Neto, E. Bellier, R. Bivand, F. G. Blanchet, M. De Cáceres, A. B. Dufour, E. Heegaard, T. Jombart, F. Munoz, J. Oksanen, J. Thioulouse & H. H. Wagner, 2012. Community ecology in the age of multivariate spatial analysis. Ecological Monographs 82: 257–275.

    Article  Google Scholar 

  • Dunbar, M. J., M. Warren, C. Extence, L. Baker, D. Cadman, D. J. Mould, J. Hall & R. Chadd, 2010. Interaction between macroinvertebrates, discharge and physical habitat in upland rivers. Aquatic Conservation: Marine and Freshwater Ecosystems 20: 31–44.

    Article  Google Scholar 

  • Eggermont, H. & O. Heiri, 2012. The chironomid-temperature relationship: expression in nature and palaeoenvironmental implications. Biological Reviews 87: 430–456.

    Article  PubMed  Google Scholar 

  • Ferrington, L. C., 2008. Global diversity of non-biting midges (Chironomidae; Insecta-Diptera) in freshwater. Hydrobiologia 595: 447–455.

    Article  Google Scholar 

  • Finn, D. S. & N. L. Poff, 2011. Examining spatial concordance of genetic and species diversity patterns to evaluate the role of dispersal limitation in structuring headwater metacommunities. Journal of the North American Benthological Society 30: 273–283.

    Article  Google Scholar 

  • Gombeer, S. C., D. Knapen & L. Bervoets, 2011. The influence of different spatial-scale variables on caddisfly assemblages in Flemish lowland streams. Ecological Entomology 36: 355–368.

    Article  Google Scholar 

  • He, F., K. J. Gaston, E. F. Connor & D. S. Srivastava, 2005. The local–regional relationship: immigration, extinction, and scale. Ecology 86: 360–365.

    Article  Google Scholar 

  • Heino, J., 2013. The importance of metacommunity ecology for environmental assessment research in the freshwater realm. Biological Reviews 88: 166–178.

    Article  PubMed  Google Scholar 

  • Heino, J. & H. Mykrä, 2008. Control of stream insect assemblages: roles of spatial configuration and local environmental factors. Ecological Entomology 33: 614–622.

    Article  Google Scholar 

  • Heino, J. & B. L. Peckarsky, 2014. Integrating behavioral, population and large-scale approaches for understanding stream insect communities. Current Opinion in Insect Science 2: 7–13.

    Article  Google Scholar 

  • Heino, J., M. Grönroos, J. Ilmonen, T. Karhu, M. Niva & L. Paasivirta, 2013. Environmental heterogeneity and β diversity of stream macroinvertebrate communities at intermediate spatial scales. Freshwater Science 32: 142–154.

    Article  Google Scholar 

  • Heino, J., A. S. Melo, L. M. Bini, F. Altermatt, S. A. Al-Shami, D. G. Angeler, N. Bonada, C. Brand, M. Callisto, K. Cottenie, O. Dangles, D. Dudgeon, A. Encalada, E. Göthe, M. Grönroos, N. Hamada, D. Jacobsen, V. L. Landeiro, R. Ligeiro, R. T. Martins, M. L. Miserendino, C. S. Md Rawi, M. E. Rodrigues, F. O. de Roque, L. Sandin, D. Schmera, L. F. Sgarbi, J. P. Simaika, T. Siqueira, R. M. Thompson & C. R. Townsend, 2015a. A comparative analysis reveals weak relationships between ecological factors and beta diversity of stream insect metacommunities at two spatial levels. Ecology and Evolution 5: 1235–1248.

    Article  PubMed  PubMed Central  Google Scholar 

  • Heino, J., A. S. Melo, T. Siqueira, J. Soininen, S. Valanko & L. M. Bini, 2015b. Metacommunity organisation, spatial extent and dispersal in aquatic systems: patterns, processes and prospects. Freshwater Biology 60: 845–869.

    Article  Google Scholar 

  • Heino, J., J. Soininen, J. Alahuhta, J. Lappalainen & R. Virtanen, 2015c. A comparative analysis of metacommunity types in the freshwater realm. Ecology and Evolution 5: 1525–1537.

    Article  PubMed  PubMed Central  Google Scholar 

  • Henriques-Oliveira, A. L., L. F. M. Dorvillé & J. L. Nessimian, 2003. Distribution of Chironomidae larvae fauna (Insecta: Diptera) on different substrates in a stream at Floresta da Tijuca, RJ, Brazil. Acta Limnologica Brasiliensia 15: 69–84.

    Google Scholar 

  • Hida, N., J. G. Maia, M. Hiraoka, O. Shimmi, & N. Mizutani, 1997. Notes on annual and daily water level changes at Breves and Caxiuanã, Amazon estuary. In Lisboa, P. L. B. (ed), Caxiuanã. Museu Paraense Emílio Goeldi Belém, Belém: 97–103.

    Google Scholar 

  • Hughes, J. M., 2007. Constraints on recovery: using molecular methods to study connectivity of aquatic biota in rivers and streams. Freshwater Biology 52: 616–631.

    Article  Google Scholar 

  • Juen, L., E. J. Cunha, F. G. Carvalho, M. C. Ferreira, T. O. Begot, A. L. Andrade, Y. Shimano, H. Leão, P. S. Pompeu & L. F. A. Montag, 2016. Effects of oil palm plantations on the habitat structure and biota of streams in Eastern Amazon. River Research and Applications 32(10): 2081–2094.

    Article  Google Scholar 

  • Juen, L. & P. De Marco, 2012. Dragonfly endemism in the Brazilian Amazon: competing hypotheses for biogeographical patterns. Biodiversity and Conservation 21: 3507–3521.

    Article  Google Scholar 

  • Kaufmann, P. R., P. Levine, E. G. Robison, C. Seeliger, & D. V Peck, 1999. Quantifying Physical Habitat in Wadeable Streams. EPA/620/R-99/003. U.S. Environmental Protection Agency, Washington, D.C. 130.

  • Landeiro, V. L., W. E. Magnusson, A. S. Melo, H. M. V. Espírito-Santo & L. M. Bini, 2011. Spatial eigenfunction analyses in stream networks: do watercourse and overland distances produce different results? Freshwater Biology 56: 1184–1192.

    Article  Google Scholar 

  • Landeiro, V. L., L. M. Bini, A. S. Melo, A. M. O. Pes & W. E. Magnusson, 2012. The roles of dispersal limitation and environmental conditions in controlling caddisfly (Trichoptera) assemblages. Freshwater Biology 57: 1554–1564.

    Article  Google Scholar 

  • Legendre, P. & E. Gallagher, 2001. Ecologically meaningful transformations for ordination of species data. Oecologia 129: 271–280.

    Article  PubMed  Google Scholar 

  • Legendre, P. & O. Gauthier, 2014. Statistical methods for temporal and space—time analysis of community composition data Statistical methods for temporal and space—time analysis of community composition data. Proceedings of the Royal Society of London B 281(1778): 20132728.

    Article  Google Scholar 

  • Legendre, P. & L. F. J. Legendre, 2012. Numerical ecology. Elsevier, Amsterdam.

    Google Scholar 

  • Leibold, M. A., M. Holyoak, N. Mouquet, P. Amarasekare, J. M. Chase, M. F. Hoopes, R. D. Holt, J. B. Shurin, R. Law, D. Tilman, M. Loreau & A. Gonzalez, 2004. The metacommunity concept: a framework for multi-scale community ecology. Ecology Letters 7: 601–613.

    Article  Google Scholar 

  • Lencioni, V., L. Marziali & B. Rossaro, 2012. Chironomids as bioindicators of environmental quality in mountain springs. Freshwater Science 31: 525–541.

    Article  Google Scholar 

  • Leps, M., J. D. Tonkin, V. Dahm, P. Haase & A. Sundermann, 2015. Disentangling environmental drivers of benthic invertebrate assemblages: the role of spatial scale and riverscape heterogeneity in a multiple stressor environment. Science of The Total Environment 536: 546–556.

    Article  PubMed  CAS  Google Scholar 

  • Loeuille, N. & M. A. Leibold, 2008. Evolution in metacommunities: on the relative importance of species sorting and monopolization in structuring communities. The American Naturalist 171: 788–799.

    Article  PubMed  Google Scholar 

  • Lowe, W. H., G. E. Likens & M. E. Power, 2006. Linking scales in stream ecology. BioScience 56: 591–597.

    Article  Google Scholar 

  • Milošević, D., V. Simić, M. Stojković, D. Čerba, D. Mančev, A. Petrović & M. Paunović, 2013. Spatio-temporal pattern of the Chironomidae community: toward the use of non-biting midges in bioassessment programs. Aquatic Ecology 47: 37–55.

    Article  Google Scholar 

  • Mykrä, H., J. Heino & T. Muotka, 2007. Scale-related patterns in the spatial and environmental components of stream macroinvertebrate assemblage variation. Global Ecology and Biogeography 16: 149–159.

    Article  Google Scholar 

  • Nicacio, G. & L. Juen, 2015. Chironomids as indicators in freshwater ecosystems: an assessment of the literature. Insect Conservation and Diversity 8: 393–403.

    Article  Google Scholar 

  • Nilsson, C., L. E. Polvi, J. Gardeström, E. M. Hasselquist, L. Lind & J. M. Sarneel, 2014. Riparian and in-stream restoration of boreal streams and rivers: success or failure? Ecohydrology 8: 753–764.

    Article  Google Scholar 

  • Padial, A. A., F. Ceschin, S. A. J. Declerck, L. De Meester, C. C. Bonecker, F. A. Lansac-Tôha, L. Rodrigues, L. C. Rodrigues, S. Train, L. F. M. Velho & L. M. Bini, 2014. Dispersal ability determines the role of environmental, spatial and temporal drivers of metacommunity structure. PLoS ONE 9: e111227.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Peres-Neto, P. R., P. Legendre, S. Dray & D. Borcard, 2006. Variation partitioning of species data matrices: estimation and comparison of fractions. Ecology 87: 2614–2625.

    Article  PubMed  Google Scholar 

  • Petsch, D. K., G. D. Pinha, J. D. Dias & A. M. Takeda, 2015. Temporal nestedness in Chironomidae and the importance of environmental and spatial factors in species rarity. Hydrobiologia 745: 181–193.

    Article  Google Scholar 

  • Poff, N. L., 1997. Landscape filters and species traits: towards mechanistic understanding and prediction in stream ecology. Journal of the North American Benthological Society 16: 391–409.

    Article  Google Scholar 

  • Puntí, T., M. Rieradevall & N. Prat, 2009. Environmental factors, spatial variation, and specific requirements of Chironomidae in Mediterranean reference streams. Journal of the North American Benthological Society 28: 247–265.

    Article  Google Scholar 

  • R Core Team, 2016. R: A Language and Environment for Statistical Computing. Vienna, Austria, https://www.r-project.org/.

  • Rossetti, D. F., M. M. Valeriano, A. M. Goes & M. Thales, 2008. Palaeodrainage on Marajo Island, northern Brazil, in relation to Holocene relative sea-level dynamics. The Holocene 18: 923–934.

    Article  Google Scholar 

  • Sensolo, D., L. U. Hepp, V. Decian & R. M. Restello, 2012. Influence of landscape on assemblages of Chironomidae in Neotropical streams. Annales de Limnologie-International Journal of Limnology 48: 391–400.

    Article  Google Scholar 

  • Starr, S. M., J. P. Benstead & R. A. Sponseller, 2014. Spatial and temporal organization of macroinvertebrate assemblages in a lowland floodplain ecosystem. Landscape Ecology 29: 1017–1031.

    Article  Google Scholar 

  • Tejerina, E. G. & A. Malizia, 2012. Chironomidae (Diptera) larvae assemblages differ along an altitudinal gradient and temporal periods in a subtropical montane stream in Northwest Argentina. Hydrobiologia 686: 41–54.

    Article  CAS  Google Scholar 

  • Thomaz, S. M., L. M. Bini & R. L. Bozelli, 2007. Floods increase similarity among aquatic habitats in river-floodplain systems. Hydrobiologia 579: 1–13.

    Article  Google Scholar 

  • Trivinho-Strixino, S., 2014. Ordem Diptera. Família Chiromidae. Guia de identificação de larvas. In Hamada, N., J. L. Nessimian, & R. B. Querino (eds), Insetos aquáticos na Amazônia brasileira: taxonomia, biologia e ecologia. Editora do INPA, Manaus: 724.

    Google Scholar 

  • Urban, M. C., 2004. Disturbance heterogeneity determines freshwater metacommunity structure. Ecology 85: 2971–2978.

    Article  Google Scholar 

  • Valente-Neto, F., V. S. Saito, T. Siqueira & A. A. Fonseca-Gessner, 2016. Evidence of species sorting driving aquatic beetles associated with woody debris in a transitional region between Cerrado and Atlantic Forest biomes. Aquatic Ecology 50: 209–220.

    Article  CAS  Google Scholar 

  • Villnäs, A., J. Norkko, S. Hietanen, A. B. Josefson, K. Lukkari & A. Norkko, 2013. The role of recurrent disturbances for ecosystem multifunctionality. Ecology 94: 2275–2287.

    Article  PubMed  Google Scholar 

  • Wojciechowski, J., J. Heino, L. M. Bini & A. A. Padial, 2017. Temporal variation in phytoplankton beta diversity patterns and metacommunity structures across subtropical reservoirs. Freshwater Biology 62: 751–766.

    Article  CAS  Google Scholar 

  • Wotton, R. S., P. D. Armitage, K. Aston, J. H. Blackburn, M. Hamburger & C. A. Woodward, 1992. Colonization and emergence of midges (Chironomidae: Diptera) in slow sand filter beds. Netherlands Journal of Aquatic Ecology 26: 331–339.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Programa de Pesquisa em Biodiversidade da Amazônia Oriental - PPBio and Fundação Amazônia Paraense de Amparo à Pesquisa FAPESPA, through the project FAPESPA: ICAAF 03/2011, for financial support. We also thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico - CNPq for providing doctoral scholarships to GN (process 141866/2013-6) and research productivity grants to LJ (process 307597/2016-4). We are grateful to the administrators and staff of the Estação Científica Ferreira Penna (Ferreira Penna Research Station). We thank editors and three anonymous reviewers, whose comments and suggestions improved prior versions of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilberto Nicacio.

Additional information

Handling editor: André Padial

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLS 506 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nicacio, G., Juen, L. Relative roles of environmental and spatial constraints in assemblages of Chironomidae (Diptera) in Amazonian floodplain streams. Hydrobiologia 820, 201–213 (2018). https://doi.org/10.1007/s10750-018-3657-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-018-3657-1

Keywords

Navigation