Skip to main content
Log in

Experimental dam releases stimulate respiration in an epilithic biofilm community

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

This study explored biofilm metabolism as a functional indicator of ecological responses to dissolved organic carbon and inorganic nutrients from managed dam releases. We hypothesised that the dam releases would stimulate epilithic biofilm community respiration (CR), and trigger a larger increase in biofilm CR relative to gross primary production (GPP). We predicted that biofilm respiration would be related to water column dissolved carbon and nutrient concentrations. Tiles colonised with epilithic biofilm were exposed to dam release waters in a stream-side mesocosm system that separated out the physical effects of flow velocity. Biofilm CR increased during two of three releases, and increases in CR were larger relative to GPP during all three releases. Biofilm CR was not linearly related to dissolved resources or abiotic environmental variables. These results show that managed dam releases can influence biofilm metabolism via a mechanism independent from the direct physical effects of increased flow velocity. This study provides new insights into the complex pathways through which managed dam releases may influence ecological processes. The stimulation of benthic CR through physical and chemical variations in dam water is a potential mechanism through which dam releases may influence biogeochemical processing and energy flow through the riverine food web.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Acuña, V., A. Giorgi, I. Muñoz, U. Uehlinger & S. Sabater, 2004. Flow extremes and benthic organic matter shape the metabolism of a headwater Mediterranean stream. Freshwater Biology 49: 960–971.

    Article  Google Scholar 

  • APHA, 2005. Standard Methods for the Examination of Water and Wastewater, 20th ed. APHA, Washington, DC.

    Google Scholar 

  • Aristi, I., M. Arroita, A. Larrañaga, L. Ponsatí, S. Sabater, D. von Schiller, A. Elosegi & V. Acuña, 2014. Flow regulation by dams affects ecosystem metabolism in Mediterranean rivers. Freshwater Biology 59: 1816–1829.

    Article  Google Scholar 

  • Beechie, T. J., D. A. Sear, J. D. Olden, G. R. Pess, J. M. Buffington, H. Moir, P. Roni & M. M. Pollock, 2010. Process-based principles for restoring river ecosystems. Bioscience 60: 209–222.

    Article  Google Scholar 

  • Biggs, B. J. F., R. A. Smith & M. J. Duncan, 1999. Velocity and sediment disturbance of periphyton in headwater streams: biomass and metabolism. Journal of the North American Benthological Society 18: 222–241.

    Article  Google Scholar 

  • Bott, T. L., 2006. Primary productivity and community respiration. In Hauer, F. R. & G. A. Lamberti (eds), Methods in Stream Ecology, 2nd ed. Elsevier, Amsterdam.

    Google Scholar 

  • Bott, T. L., J. T. Brock, A. Baattrup Pedersen, P. A. Chambers, W. K. Dodds, K. T. Himbeault, J. R. Lawrence, D. Planas, E. Snyder & G. M. Wolfaardt, 1997. An evaluation of techniques for measuring periphyton metabolism in chambers. Canadian Journal of Fisheries and Aquatic Sciences 54: 715–725.

    Article  Google Scholar 

  • Boyer, E. W., G. M. Hornberger, K. E. Bencala & D. M. McKnight, 2000. Effects of asynchronous snowmelt on flushing of dissolved organic carbon: a mixing model approach. Hydrological Processes 14: 3291–3308.

    Article  Google Scholar 

  • Boynton, W. R., W. M. Kemp, C. G. Osborne, K. R. Kaumeyer & M. C. Jenkins, 1981. Influence of water circulation rate on in situ measurements of benthic community respiration. Marine Biology 65: 185–190.

    Article  Google Scholar 

  • Bunn, S. E. & A. H. Arthington, 2002. Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity. Environmental Management 30: 492–507.

    Article  PubMed  Google Scholar 

  • Cardinale, B. J., M. A. Palmer, C. M. Swan, S. Brooks & N. L. Poff, 2002. The influence of substrate heterogeneity on biofilm metabolism in a stream ecosystem. Ecology 83: 412–422.

    Article  Google Scholar 

  • Carney, R. L., S. M. Mitrovic, T. Jeffries, D. Westhorpe, N. Curlevski & J. R. Seymour, 2015. River bacterioplankton community responses to a high inflow event. Aquatic Microbial Ecology 75: 187–205.

    Article  Google Scholar 

  • Chester, H. & R. Norris, 2006. Dams and flow in the Cotter River, Australia: effects on instream trophic structure and benthic metabolism. Hydrobiologia 572: 275–286.

    Article  Google Scholar 

  • Coleman, D. & S. Williams, 2016. Mobilising fine sediment in a highly regulated upland snowmelt river using hydrological scaled experimental floods. Marine and Freshwater Research 68: 146–158.

    Google Scholar 

  • Comte, J., L. Fauteux & P. A. del Giorgio, 2013. Links between metabolic plasticity and functional redundancy in freshwater bacterioplankton communities. Frontiers in Microbiology 4: 112.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cook, R. A., B. Gawne, R. Petrie, D. S. Baldwin, G. N. Rees, D. L. Nielsen & N. S. P. Ning, 2015. River metabolism and carbon dynamics in response to flooding in a lowland river. Marine and Freshwater Research 66: 919–927.

    Article  CAS  Google Scholar 

  • Davie, A. W. & S. M. Mitrovic, 2014. Benthic algal biomass and assemblage changes following environmental flow releases and unregulated tributary flows downstream of a major storage. Marine and Freshwater Research 65: 1059–1071.

    Article  Google Scholar 

  • Donato, J., Y. Abuhatab & S. Sabater, 2014. Epilithic biofilm metabolism during the high water flow period in an Andean neotropical stream. Hydrobiologia 728: 41–50.

    Article  Google Scholar 

  • Eaton, A. D. & M. H. Franson, 2005. Standard methods for the examination of water & wastewater. American Public Health Association.

  • Fellows, C. S., J. E. Clapcott, J. W. Udy, S. E. Bunn, B. D. Harch, M. J. Smith & P. M. Davies, 2006. Benthic metabolism as an indicator of stream ecosystem health. Hydrobiologia 572: 71–87.

    Article  Google Scholar 

  • Findlay, S. E. G., R. L. Sinsabaugh, W. V. Sobczak & M. Hoostal, 2003. Metabolic and structural response of hyporheic microbial communities to variations in supply of dissolved organic matter. Limnology and Oceanography 48: 1608–1617.

    Article  CAS  Google Scholar 

  • Freeman, C. & M. A. Lock, 1995. The biofilm polysaccharide matrix: a buffer against changing organic substrate supply? Limnology and Oceanography 40: 273–278.

    Article  CAS  Google Scholar 

  • Fullerton, A. H., K. M. Burnett, E. A. Steel, R. L. Flitcroft, G. R. Pess, B. E. Feist, C. E. Torgersen, D. J. Miller & B. L. Sanderson, 2010. Hydrological connectivity for riverine fish: measurement challenges and research opportunities. Freshwater Biology 55: 2215–2237.

    Article  Google Scholar 

  • Gallardo, B., C. Espanol & F. A. Comin, 2012. Aquatic metabolism short-term response to the flood pulse in a Mediterranean floodplain. Hydrobiologia 693: 251–264.

    Article  CAS  Google Scholar 

  • Gillespie, B. R., S. Desmet, P. Kay, M. R. Tillotson & L. E. Brown, 2015. A critical analysis of regulated river ecosystem responses to managed environmental flows from reservoirs. Freshwater Biology 60: 1365–2427.

    Article  Google Scholar 

  • Goodman, K. J., M. A. Baker & W. A. Wurtsbaugh, 2011. Lakes as buffers of stream dissolved organic matter (DOM) variability: temporal patterns of DOM characteristics in mountain stream-lake systems. Journal of Geophysical Research-Biogeosciences 116: 15.

    Article  CAS  Google Scholar 

  • Hinton, M. J., S. L. Schiff & M. C. English, 1997. The significance of storms for the concentration and export of dissolved organic carbon from two Precambrian Shield catchments. Biogeochemistry 36: 67–88.

    Article  CAS  Google Scholar 

  • Hitchcock, J. N. & S. M. Mitrovic, 2013. Different resource limitation by carbon, nitrogen and phosphorus between base flow and high flow conditions for estuarine bacteria and phytoplankton. Estuarine, Coastal and Shelf Science 135: 106–115.

    Article  CAS  Google Scholar 

  • Hitchcock, J. N. & S. M. Mitrovic, 2015. After the flood: changing dissolved organic carbon bioavailability and bacterial growth following inflows to estuaries. Biogeochemistry 124: 219–233.

    Article  CAS  Google Scholar 

  • Hitchcock, J. N., S. M. Mitrovic, W. L. Hadwen, D. L. Roelke, I. O. Growns & A.-M. Rohlfs, 2016. Terrestrial dissolved organic carbon subsidizes estuarine zooplankton: an in situ mesocosm study. Limnology and Oceanography 61: 254–267.

    Article  CAS  Google Scholar 

  • Kreutzweiser, D. P. & S. S. Capell, 2003. Benthic microbial utilization of differential dissolved organic matter sources in a forest headwater stream. Canadian Journal of Forest Research-Revue Canadienne De Recherche Forestiere 33: 1444–1451.

    Article  Google Scholar 

  • Lock, M. A. & P. H. John, 1979. The effect of flow patterns on uptake of phosphorus by river periphyton. Limnology and Oceanography 24: 376–383.

    Article  CAS  Google Scholar 

  • McClain, M. E., E. W. Boyer, C. L. Dent, S. E. Gergel, N. B. Grimm, P. M. Groffman, S. C. Hart, J. W. Harvey, C. A. Johnston, E. Mayorga, W. H. McDowell & G. Pinay, 2003. Biogeochemical hot spots and hot moments at the interface of terrestrial and aquatic ecosystems. Ecosystems 6: 301–312.

    Article  CAS  Google Scholar 

  • Meyer, J. L., 1994. The microbial loop in flowing waters. Microbial Ecology 28: 195–199.

    Article  PubMed  CAS  Google Scholar 

  • Neely, R. K. & R. G. Wetzel, 1995. Simultaneous use of 14C and 3H to determine autotrophic production and bacterial protein production in periphyton. Microbial Ecology 30: 227–237.

    Article  PubMed  CAS  Google Scholar 

  • O’Connell, M., D. S. Baldwin, A. I. Robertson & G. Rees, 2000. Release and bioavailability of dissolved organic matter from floodplain litter: influence of origin and oxygen levels. Freshwater Biology 45: 333–342.

    Article  Google Scholar 

  • O’Connor, B. L., J. W. Harvey & L. E. McPhillips, 2012. Thresholds of flow-induced bed disturbances and their effects on stream metabolism in an agricultural river. Water Resources Research. https://doi.org/10.1029/2011WR011488.

    Article  Google Scholar 

  • Odum, H. T., 1956. Primary production in flowing waters. Limnology and Oceanography 1: 102–117.

    Article  Google Scholar 

  • Phinney, H. K. & C. D. McIntire, 1965. Effect of temperature on metabolism of periphyton communities developed in laboratory streams. Limnology and Oceanography 10: 341–345.

    Article  Google Scholar 

  • Poff, N. L., J. D. Olden, D. M. Merritt & D. M. Pepin, 2007. Homogenization of regional river dynamics by dams and global biodiversity implications. Proceedings of the National Academy of Sciences of the United States of America 104: 5732–5737.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Quinn, G. P. & M. J. Keough, 2002. Experimental Design and Data Analysis for Biologists. Cambridge University Press, New York.

    Book  Google Scholar 

  • Rees, G. N., G. Beattie, P. M. Bowen & B. T. Hart, 2005a. Heterotrophic bacterial production in the lower Murray River, south-eastern Australia. Marine and Freshwater Research 56: 835–841.

    Article  CAS  Google Scholar 

  • Rees, G. N., P. M. Bowen & G. O. Watson, 2005b. Variability in benthic respiration in three southeastern Australian lowland rivers. River Research and Applications 21: 1147–1156.

    Article  Google Scholar 

  • Reid, M. A., M. C. Thoms & F. J. Dyer, 2006. Effects of spatial and temporal variation in hydraulic conditions on metabolism in cobble biofilm communities in an Australian upland stream. Journal of the North American Benthological Society 25: 756–767.

    Article  Google Scholar 

  • Roberts, B., P. Mulholland & W. Hill, 2007. Multiple scales of temporal variability in ecosystem metabolism rates: results from 2 years of continuous monitoring in a forested headwater stream. Ecosystems 10: 588–606.

    Article  CAS  Google Scholar 

  • Rohlfs, A., S. M. Mitrovic, S. WIlliams & D. Coleman, 2015. Can tributary in-flows improve DOC regime recovery in a snowmelt river regulated by a large reservoir? Marine and Freshwater Research. 67: 1338–1345.

    Article  CAS  Google Scholar 

  • Rohlfs, A.-M., S. M. Mitrovic, S. Williams, J. N. Hitchcock & G. N. Rees, 2016. Dissolved organic carbon delivery from managed flow releases in a montane snowmelt river. Aquatic Sciences 78: 793–807.

    Article  CAS  Google Scholar 

  • Sobczak, W. V., S. Findlay & S. Dye, 2003. Relationships between DOC bioavailability and nitrate removal in an upland stream: an experimental approach. Biogeochemistry 62: 309–327.

    Article  CAS  Google Scholar 

  • Staehr, P. A., J. M. Testa, W. M. Kemp, J. J. Cole, K. Sand-Jensen & S. V. Smith, 2012. The metabolism of aquatic ecosystems: history, applications, and future challenges. Aquatic Sciences 74: 15–29.

    Article  Google Scholar 

  • Uehlinger, U., B. Kawecka & C. T. Robinson, 2003. Effects of experimental floods on periphyton and stream metabolism below a high dam in the Swiss Alps (River Spol). Aquatic Sciences 65: 199–209.

    Article  Google Scholar 

  • Wagner, K., K. Besemer, N. R. Burns, T. J. Battin & M. M. Bengtsson, 2015. Light availability affects stream biofilm bacterial community composition and function, but not diversity. Environmental Microbiology 17: 5036–5047.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wetzel, R. G., 2005. Periphyton in the aquatic ecosystem and food webs. In Azim, M. E., M. C. J. Verdegem, A. A. van Dam & M. C. M. Beveridge (eds), Periphyton Ecology Exploitation and Management. CABI, Oxfordshire.

    Google Scholar 

  • Young, R. G., C. D. Matthaei & C. R. Townsend, 2008. Organic matter breakdown and ecosystem metabolism: functional indicators for assessing river ecosystem health. Journal of the North American Benthological Society 27: 605–625.

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by the DPI Water Snowy Flow Response Monitoring and Modelling project and Snowy Hydro Limited. We thank James Hitchcock for assistance with sample collection, Greg Dalsanto, Greg Evans, John Brayan and Bruce Smart for logistical support and staff of the DPI Water laboratory for water quality analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ann-Marie Rohlfs.

Additional information

Handling editor: Eric Larson

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 11 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rohlfs, AM., Williams, S., Rees, G.N. et al. Experimental dam releases stimulate respiration in an epilithic biofilm community. Hydrobiologia 820, 175–187 (2018). https://doi.org/10.1007/s10750-018-3654-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-018-3654-4

Keywords

Navigation