Skip to main content
Log in

Hypoxia within macrophyte vegetation limits the use of methane-derived carbon by larval chironomids in a shallow temperate eutrophic lake

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Methane-derived carbon (MDC) can subsidize lake food webs. However, the trophic transfer of MDC to consumers within macrophyte vegetation is largely unknown. We investigated the seasonality of δ13C in larval chironomids within Nelumbo nucifera (Gaertn.) and Trapa natans var. Japonica (Nakai) vegetation in the shallow, eutrophic Lake Izunuma in Japan. Over the past several years, N. nucifera has rapidly expanded across more than 80% of the lake surface. Prior to the expansion of N. nucifera (2007–2008), a previous study reported extremely low larval δ13C levels with peak sediment methane concentrations in August or September. After the expansion of N. nucifera (2014–2015), we observed extreme hypoxia as low as or lower than 1 mg l−1 among the macrophyte coverage during June and August. During August and September, no larvae could be found among N. nucifera, and larvae in T. natans showed relatively high δ13C levels (> − 40‰). In contrast, larvae were markedly 13C–depleted (down to − 60‰) during October and November. The renewed supply of oxygen to the lake bottom may stimulate MOB activity, leading to an increase in larval assimilation of MDC. Our results suggest that macrophyte vegetation can affect the seasonality of MDC transfer to benthic consumers under hypoxic conditions in summer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agasild, H., P. Zingel, L. Tuvikene, A. Tuvikene, H. Timm, T. Feldmann, J. Salujõe, K. Toming, R. I. Jones & T. Nõges, 2014. Biogenic methane contributes to the food web of a large, shallow lake. Freshwater Biology 59(2): 272–285.

    Article  CAS  Google Scholar 

  • Borrel, G., D. Jézéquel, C. Biderre-Petit, N. Morel-Desrosiers, J. P. Morel, P. Peyret, G. Fonty & A. C. Lehours, 2011. Production and consumption of methane in freshwater lake ecosystems. Research in Microbiology 162(9): 832–847.

    Article  PubMed  CAS  Google Scholar 

  • Bunch, A. J., M. S. Allen & D. C. Gwinn, 2010. Spatial and temporal hypoxia dynamics in dense emergent macrophytes in a Florida lake. Wetlands 30(3): 429–435.

    Article  Google Scholar 

  • Caraco, N., J. Cole, S. Findlay & C. Wigand, 2006. Vascular plants as engineers of oxygen in aquatic systems. BioScience 56(3): 219–225.

    Article  Google Scholar 

  • Carpenter, S. R., 1981. Submersed vegetation: an internal factor in lake ecosystem succession. The American Naturalist 118(3): 372–383.

    Article  Google Scholar 

  • Carpenter, S. R. & D. M. Lodge, 1986. Effects of submersed macrophytes on ecosystem processes. Aquatic Botany 26: 341–370.

    Article  Google Scholar 

  • Chan, O. C., P. Claus, P. Casper, A. Ulrich, T. Lueders & R. Conrad, 2005. Vertical distribution of structure and function of the methanogenic archaeal community in Lake Dagow sediment. Environmental Microbiology 7(8): 1139–1149.

    Article  PubMed  CAS  Google Scholar 

  • Child, A. W. & B. C. Moore, 2015. Effects of hypolimnetic oxygenation on the dietary consumption of methane-oxidizing bacteria by Chironomus larvae in dimictic mesotrophic lakes. Freshwater Science 34(4): 1293–1303.

    Article  Google Scholar 

  • Deines, P., P. L. E. Bodelier, G. Eller & J. Grey, 2007a. Methane-derived carbon flows through methane-oxidizing bacteria to higher trophic levels in aquatic systems. Environmental Microbiology 9(5): 1126–1134.

    Article  PubMed  CAS  Google Scholar 

  • Deines, P., J. Grey, H. H. Richnow & G. Eller, 2007b. Linking larval chironomids to methane: seasonal variation of the microbial methane cycle and chironomid δ13C. Aquatic Microbial Ecology 46(3): 273–282.

    Article  Google Scholar 

  • DeNiro, M. J. & S. Epstein, 1977. Mechanism of carbon isotope fractionation associated with lipid synthesis. Science 197(4300): 261–263.

    Article  PubMed  CAS  Google Scholar 

  • Devine, J. A. & M. J. Vanni, 2002. Spatial and seasonal variation in nutrient excretion by benthic invertebrates in a eutrophic reservoir. Freshwater Biology 47(6): 1107–1121.

    Article  Google Scholar 

  • Dieter, C. D., 1990. The importance of emergent vegetation in reducing sediment resuspension in wetlands. Journal of Freshwater Ecology 5(4): 467–473.

    Article  Google Scholar 

  • Doi, H., E. Kikuchi, S. Takagi & S. Shikano, 2007. Changes in carbon and nitrogen stable isotopes of chironomid larvae during growth, starvation and metamorphosis. Rapid Communications in Mass Spectrometry 21(6): 997–1002.

    Article  PubMed  CAS  Google Scholar 

  • Eller, G., P. Deines, J. Grey, H. H. Richnow & M. Krüger, 2005. Methane cycling in lake sediments and its influence on chironomid larval partial δ13C. Limnology and Oceanography 54(3): 339–350.

    CAS  Google Scholar 

  • Frodge, J. D., G. L. Thomas & G. B. Pauley, 1990. Effects of canopy formation by floating and submergent aquatic macrophytes on the water quality of two shallow Pacific Northwest lakes. Aquatic Botany 38(2–3): 231–248.

    Article  Google Scholar 

  • Fujibayashi, M., M. Nomura, X. Xu, R. Sato, Y. Aikawa & O. Nishimura, 2013. Analysis of sedimentary organic carbon dynamics in Lake Izunuma using by current flow and fatty acid biomarker. Journal of JSCE Series.G (Environmental Research) 69: 565–570.

    Article  Google Scholar 

  • Fukuhara, H. & K. Yasuda, 1989. Ammonium excretion by some freshwater zoobenthos from a eutrophic lake. Hydrobiologia 173(1): 1–8.

    Article  Google Scholar 

  • Gentzel, T., A. E. Hershey, P. A. Rublee & S. C. Whalen, 2012. Net sediment production of methane, distribution of methanogens and methane-oxidizing bacteria, and utilization of methane-derived carbon in an arctic lake. Inland Waters 2(2): 77–88.

    Article  CAS  Google Scholar 

  • Grey, J., 2016. The incredible lightness of being methane-fuelled: stable isotopes reveal alternative energy pathways in aquatic ecosystems and beyond. Frontiers in Ecology and Evolution 4: 8.

    Article  Google Scholar 

  • Grey, J., A. Kelly & R. I. Jones, 2004a. High intraspecific variability in carbon and nitrogen stable isotope ratios of lake chironomid larvae. Limnology and Oceanography 49(1): 239–244.

    Article  CAS  Google Scholar 

  • Grey, J., A. Kelly, S. Ward, N. Sommerwerk & R. I. Jones, 2004b. Seasonal changes in the stable isotope values of lake-dwelling chironomid larvae in relation to feeding and life cycle variability. Freshwater Biology 49(6): 681–689.

    Article  CAS  Google Scholar 

  • Hamburger, K., P. C. Dall & C. Lindegaard, 1994. Energy metabolism of Chironomus anthracinus (Diptera: Chironomidae) from the profundal zone of Lake Esrom, Denmark, as a function of body size, temperature and oxygen concentration. Hydrobiologia 294(1): 43–50.

    Article  CAS  Google Scholar 

  • Hamilton, S. K., J. L. Tank, D. F. Raikow, E. R. Siler, N. J. Dorn & N. E. Leonard, 2004. The role of instream vs allochthonous N in stream food webs: modeling the results of an isotope addition experiment. Journal of the North American Benthological Society 23(3): 429–448.

    Article  Google Scholar 

  • Hargeby, A., I. Blindow & L.-A. Hansson, 2004. Shifts between clear and turbid states in a shallow lake: multicausal stress from climate, nutrients and biotic interactions. Archiv für Hydrobiologie 161(4): 433–454.

    Article  Google Scholar 

  • Hargeby, A., I. Blindow & G. Andersson, 2007. Long-term patterns of shifts between clear and turbid states in Lake Krankesjo¨n and Lake Tåkern. Ecosystems 10(1): 29–36.

    Article  CAS  Google Scholar 

  • Hershey, A. E., R. M. Northington, J. Hart-Smith, M. Bostick & S. C. Whalen, 2015. Methane efflux and oxidation, and use of methane–derived carbon by larval Chironomini, in arctic lake sediments. Limnology and Oceanography 60(1): 276–285.

    Article  CAS  Google Scholar 

  • Hilsenhoff, W. L., 1966. The biology of Chironomus plumosus (Diptera: Chironomidae) in Lake Winnebago, Wisconsin. Annals of the Entomological Society of America 59(3): 465–473.

    Article  Google Scholar 

  • Hilt, S. & E. M. Gross, 2008. Can allelopathically active submerged macrophytes stabilise clear-water states in shallow lakes? Basic and Applied Ecology 9(4): 422–432.

    Article  Google Scholar 

  • Izunuma-Uchinuma Natural regeneration council, 2009. Master plan for natural regeneration of Izunuma-Uchinuma. Miyagi Prefecture, Sendai. (in Japanese).

    Google Scholar 

  • Izunuma-Uchinuma Nature Restoration Committee, 2013. https://www.pref.miyagi.jp/soshiki/sizenhogo/04-1kyougikai.html. Accessed 15 October 2017. (in Japanese).

  • Japan Meteorological Agency, 2017. Meteorological Database. http://www.data.jma.go.jp/obd/stats/etrn/index.php?sess=6ef525a9cdef28cea634ce58ca736e68. Accessed 20 October 2017. (in Japanese).

  • Jeppesen, E., M. Søndergaard, M. Søndergaard & K. Christoffersen (eds), 1998. The structuring role of submerged macrophytes in lakes. Ecological Series. Springer, Berlin: 423.

    Google Scholar 

  • Jones, R. I. & J. Grey, 2011. Biogenic methane in freshwater food webs. Freshwater Biology 56(2): 213–229.

    Article  CAS  Google Scholar 

  • Jones, R. I., C. E. Carter, A. Kelly, S. Ward, D. J. Kelly & J. Grey, 2008. Widespread contribution of methane-cycle bacteria to the diets of lake profundal chironomid larvae. Ecology 89(3): 857–864.

    Article  PubMed  Google Scholar 

  • Kajan, R. & P. Frenzel, 1999. The effect of chironomid larvae on production, oxidation and fluxes of methane in a flooded rice soil. FEMS Microbiology Ecology 28(2): 121–129.

    Article  CAS  Google Scholar 

  • Kato, Y., J. Nishihiro & T. Yoshida, 2016. Floating-leaved macrophyte (Trapa japonica) drastically changes seasonal dynamics of a temperate lake ecosystem. Ecological Research 31(5): 695–707.

    Article  CAS  Google Scholar 

  • Kiyashko, S. I., T. Narita & E. Wada, 2001. Contribution of methanotrophs to freshwater macroinvertebrates: evidence from stable isotope ratios. Aquatic Microbial Ecology 24(2): 203–207.

    Article  Google Scholar 

  • Lennon, J. T., A. M. Faiia, X. Feng & K. L. Cottingham, 2006. Relative importance of CO2 recycling and CH4 pathways in lake foodwebs along a dissolved organic carbon gradient. Limnology and Oceanography 51(4): 1602–1613.

    Article  CAS  Google Scholar 

  • Macko, S. A., M. L. Fogel, P. E. Hare & T. C. Hoering, 1987. Isotopic fractionation of nitrogen and carbon in the synthesis of amino acids by microorganisms. Chemical Geology 65(1): 79–92.

    Article  CAS  Google Scholar 

  • McLachlan, A. J., 1977. Some effects of tube shape on the feeding of Chironomus plumosus L. (Diptera: Chironomidae). Journal of Animal Ecology 46: 139–146.

    Article  Google Scholar 

  • Miyagi Prefecture, 2017. Results of water quality measurements in public waters. https://www.pref.miyagi.jp/soshiki/kankyo-t/koukyouyousuiiki-sokuhou.html. Accessed 24 September 2017. (in Japanese).

  • Moss, B., S. McGowan & L. Carvalho, 1994. Determinations of phytoplankton crops by top-down and bottom-up mechanisms in a group of English lakes, the West Midland meres. Limnology and Oceanography 39(5): 1020–1029.

    Article  CAS  Google Scholar 

  • Nakazato, R. & K. Hirabayashi, 1998. Effect of larval density on temporal variation in life cycle patterns of Chironomus plumosus (L.) (Diptera: Chironomidae) in the profundal zone of eutrophic Lake Suwa during 1982–1995. Japanese Journal of Limnolgy 59: 13–26.

    Article  Google Scholar 

  • National Institute for Environmental Studies, 2017. Environmental numerical database. https://www.nies.go.jp/igreen/md_down.html. Accessed 24 September 2017. (in Japanese).

  • Peterson, B. J. & B. Fry, 1987. Stable isotopes in ecosystem studies. Annual Review of Ecology 18(1): 293–320.

    Article  Google Scholar 

  • Post, D. M., 2002. Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83(3): 703–718.

    Article  Google Scholar 

  • R Development Core Team, 2017. R: a language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria

  • Ravinet, M., J. Syväranta, R. I. Jones & J. Grey, 2010. A trophic pathway from biogenic methane supports fish biomass in a temperate lake ecosystem. Oikos 119(2): 409–416.

    Article  Google Scholar 

  • Rose, C. & W. G. Crumpton, 2006. Spatial patterns in dissolved oxygen and methane concentrations in a prairie pothole wetland in Iowa, USA. Wetlands 26: 1020–1025.

    Article  Google Scholar 

  • Sanseverino, A. M., D. Bastviken, I. Sundh, J. Pickova & A. Enrich-Prast, 2012. Methane carbon supports aquatic food webs to the fish level. PloS one 7: e42723.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Scheffer, M., 1998. Ecology of Shallow Lakes. Chapman and Hall, London.

    Google Scholar 

  • Scheffer, M. & E. Jeppesen, 2007. Regime shifts in shallow lakes. Ecosystems 10(1): 1–3.

    Article  Google Scholar 

  • Scheffer, M. & E. H. van Nes, 2007. Shallow lakes theory revisited: various alternative regimes driven by climate, nutrients, depth and lake size. Hydrobiologia 584(1): 455–466.

    Article  CAS  Google Scholar 

  • Scheffer, M., S. H. Hosper, M. L. Meijer, B. Moss & E. Jeppesen, 1993. Alternative equilibria in shallow lakes. Trends in ecology & evolution 8(8): 275–279.

    Article  CAS  Google Scholar 

  • Schwarz, J. I., W. Eckert & R. Conrad, 2008. Response of the methanogenic microbial community of a profundal lake sediment (Lake Kinneret, Israel) to algal deposition. Limnology and Oceanography 53(1): 113–121.

    Article  CAS  Google Scholar 

  • Shidara, S., 1992. Social conditions surrounding Izunuma and Uchinuma Lakes. In Advisory Committee for Environmental Preservation Measures (ed.), Report for Environmental Preservation Measures of Izunuma and Uchinuma Lakes. Miyagi Prefecture, Japan: 155–164. (in Japanese).

    Google Scholar 

  • Sobek, S., E. Durisch-Kaiser, R. Zurbrügg, N. Wongfun, M. Wessels, N. Pasche & B. Wehrli, 2009. Organic carbon burial efficiency in lake sediments controlled by oxygen exposure time and sediment source. Limnology and Oceanography 54(6): 2243–2254.

    Article  Google Scholar 

  • The Miyagi prefectual Izunuma-Uchinuma Environmental Foundation, 2010. A floral list around Lake Izunuma-Uchinuma. Izunuma-Uchinuma Wetland Researches 4: 41–61. (in Japanese with English abstract).

    Google Scholar 

  • Turner, A. M., E. J. Cholak & M. Groner, 2010. Expanding American lotus and dissolved oxygen concentrations of a shallow lake. American Midland Naturalist 164(1): 1–8.

    Article  Google Scholar 

  • Webster, J. R. & E. F. Benfield, 1986. Vascular plant breakdown in freshwater ecosystems. Annual Review of Ecology and Systematic 17(1): 567–594.

    Article  Google Scholar 

  • Wetzel, G. R., 2001a. Phosphorus and nitrogen loading and algal productivity. In Wetzel, G. R. (ed.), Limnology, 3rd ed. Academic Press, San Diego: 279–286.

    Google Scholar 

  • Wetzel, G. R., 2001b. Shallow lakes and ponds. In Wetzel, G. R. (ed.), Limnology, 3rd ed. Academic Press, San Diego: 625–630.

    Chapter  Google Scholar 

  • Whiticar, M. J., 1999. Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chemical Geology 161(1–3): 291–314.

    Article  CAS  Google Scholar 

  • Yamaki, A. & M. Yamamuro, 2013. Floating-leaved and emergent vegetation as habitat for fishes in a eutrophic temperate lake without submerged vegetation. Limnology 14(3): 257–268.

    Article  Google Scholar 

  • Yasuno, N., Y. Chiba, K. Shindo, T. Shimada, S. Shikano & E. Kikuchi, 2009. Changes in the trophic state and the benthic fauna in Lake Izunuma, with special reference to the chironomid species. Izunuma-Uchinuma Wetland Researches 3: 49–63. (in Japanese with English abstract).

    Google Scholar 

  • Yasuno, N., S. Shikano, A. Muraoka, T. Shimada, T. Ito & E. Kikuchi, 2012. Seasonal changes in the contribution of methane-oxidizing bacteria to food sources of larval chironomids in a polymictic lake. Limnology 13(1): 107–116.

    Article  CAS  Google Scholar 

  • Yasuno, N., S. Shikano, T. Shimada, K. Shindo & E. Kikuchi, 2013. Comparison of the exploitation of methane-derived carbon by tubicolous and non-tubicolous chironomid larvae in a temperate eutrophic lake. Limnology 14(3): 239–246.

    Article  Google Scholar 

  • Yasuno, N., T. Shimada, J. Ashizawa, M. Hoshi, Y. Fujimoto & E. Kikuchi, 2015. Influence of hypoxia related to the expansion of lotus vegetation on benthic invertebrate community in Lake Izunuma. Izunuma-Uchinuma Wetland Researches 9: 13–22. (in Japanese with English abstract).

    Google Scholar 

  • Yoshii, K., N. G. Melnik, O. A. Timoshkin, N. A. Bondarenko & P. N. Anoshko, 1999. Stable isotope analyses of the pelagic food web in Lake Baikal. Limnology and Oceanography 44(3): 502–511.

    Article  Google Scholar 

Download references

Acknowledgements

We sincerely thank Dr. K. Itoh, Graduate School of Agricultural Science, Tohoku University, for her assistance in the stable isotope analytical facilities. This study was supported partly by Grants-in-Aid for Scientific Research (C) from the Japan Society for the Promotion of Science (nos. 25440232).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natsuru Yasuno.

Additional information

Handling editor: Mariana Meerhoff

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 11 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yasuno, N., Sako, Y., Shikano, S. et al. Hypoxia within macrophyte vegetation limits the use of methane-derived carbon by larval chironomids in a shallow temperate eutrophic lake. Hydrobiologia 822, 69–84 (2018). https://doi.org/10.1007/s10750-018-3627-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-018-3627-7

Keywords

Navigation