Skip to main content

Advertisement

Log in

Efficiency of rapid field methods for detecting non-native fish in Eastern Brazilian lakes

  • INVASIVE SPECIES II
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Where biodiversity conservation and environmental preservation are significant concerns, rapid assessment and monitoring of the colonization and spread of non-native species are essential for timely decision-making and response. We developed and evaluated the adequacy of a rapid assessment protocol (RAP) for detecting non-native fish species in 74 Eastern Brazilian lakes. The RAP consists of a single field day employing two surveyors to conduct interviews with local sport fishers, visual surveys of fish, angling with lures, and gillnetting. We compared our results with those from separate, intense, large sampling effort (LSE) field surveys. Despite requiring less than 1/100th of the field effort, the RAP was able to detect the presence of most non-native fish species that were reported in the same lakes by LSE surveys. Information from local sport fishers was invaluable, particularly for detecting species that were in low abundance, but was not available for lakes within a forest preserve area. Non-native introductions commonly lead to rapid and widespread invasion and adverse effects on native biota. Our results strongly suggest that the RAP could function as a cost-effective tool for efficiently assessing the presence of non-native fishes in lakes and monitoring their colonization and spread over large geographic areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Britski, H. A., K. Z. S. Silimon & B. S. Lopes, 1999. Peixes do Pantanal – Manual de identificação. Embrapa CPAP, Corumbá.

    Google Scholar 

  • Deceliere-Verges, C., C. Argillier, C. Lanoiselee, J. De Bortoli & J. Guillard, 2009. Stability and precision of the fish metrics obtained using CEN multi-mesh gillnets in natural and artificial lakes in France. Fisheries Research 99: 17–25.

    Article  Google Scholar 

  • Douglass, L. L., H. P. Possingham, J. Carwardine, C. J. Klein, S. H. Roxburgh, J. Russell-Smith & K. A. Wilson, 2011. The effect of carbon credits on savanna land management and priorities for biodiversity conservation. PLoS ONE 6: 1–11. https://doi.org/10.1371/journal.pone.0023843.

    Article  CAS  Google Scholar 

  • Géry, J., 1977. Characoids of the World. T F H Publication Inc., Ltd., Neptune City.

    Google Scholar 

  • Giacomini, H. C., D. P. Lima-Jr, A. O. Latini & H. M. V. Espírito-Santo, 2011. Spatio-temporal segregation and size distribution of fish assemblages as related to non-native species occurrence in the middle rio Doce Valley, MG, Brazil. Neotropical Ichthyology 9: 135–146.

    Article  Google Scholar 

  • Golden, A. S., W. Naisilsisili, I. Ligairi & J. A. Drew, 2014. Combining natural history collections with fisher knowledge for community-based conservation in Fiji. PLoS ONE 9: e98036.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Harrison, J. A. & P. Martinez, 1995. Measurement and mapping of avian diversity in southern Africa: implications for conservation planning. The International Journal of Avian Science 137: 410–417.

    Google Scholar 

  • Harwood, J. D. & M. N. Parjulee, 2010. Global impact of biological invasions: transformation in pest management approaches. Biological Invasions 12: 2855–2856.

    Article  Google Scholar 

  • Heger, T. & L. Trepl, 2003. Predicting biological invasions. Biological Invasions 5: 313–321.

    Article  Google Scholar 

  • Hosmer, D. W. & S. Lemeshow, 1989. Applied logistic regression. Wiley, New York.

    Google Scholar 

  • Kocovsky, P. M., M. A. Stapanjan & C. T. Knight, 2010. Night sampling improves indices used for management of yellow perch in Lake Erie. Fisheries Management and Ecology 17: 10–18.

    Article  Google Scholar 

  • Krebs, C. J., 1999. Ecological Methodology. Benjamin/Cummings, Menlo Park.

    Google Scholar 

  • Latini, A. O. & M. Petrere Jr., 2004. Reduction of a native fish fauna by alien species: an example from Brazilian freshwater tropical lakes. Fisheries Management and Ecology 11: 71–79.

    Article  Google Scholar 

  • Latini, A. O. & M. Petrere Jr., 2007. Which factors determine non-indigenous fish dispersal? A study of the red piranha in tropical Brazilian lakes. In Gherardi, F. (ed.), Biological invaders in inland waters: profiles, distribution and threats. Springer, Dordrecht: 415–422.

    Chapter  Google Scholar 

  • Latini, A. O., L. T. Oporto, D. P. Lima-Júnior, D. C. Resende & R. O. Latini, 2016. Peixes. In Latini, A. O., D. C. Resende, V. B. Pombo & L. Coradin (eds), Espécies exóticas invasoras de águas Continentais no Brasil. MMA, Brasília: 295–581.

    Google Scholar 

  • Lima, F. P., A. O. Latini & P. De Marco Jr, 2010. How are the lakes? Environmental perception by fishermen and alien fish dispersal in Brazilian tropical lakes. Interciencia 35: 84–91.

    Google Scholar 

  • Lodh, R. & B. K. Agarwala, 2016. Rapid assessment of diversity and conservation of butterflies in Rowa Wildlife Sanctuary: an Indo-Burmese hotspot – Tripura, N.E., India. Tropical Ecology 57: 231–242.

    Google Scholar 

  • MacIsaac, H. J., B. Beric, S. A. Bailey, N. E. Mandrak & A. Ricciardi, 2015. Are the Great Lakes at risk of new fish invasions from trans-Atlantic shipping? Journal of Great Lakes Research 41: 1172–1175.

    Article  Google Scholar 

  • Madalozzo, B., T. G. Santos, M. B. Santos, C. Both & S. Cechin, 2017. Biodiversity assessment: selecting sampling techniques to access anuran diversity in grassland ecosystems. Wildlife Research 44: 78–91.

    Article  Google Scholar 

  • Marr, S. M., B. R. Ellender, D. J. Woodford, M. E. Alexander, R. J. Wasserman, P. Z. Ivey, T. Zengeya & O. L. F. Weyl, 2017. Evaluating invasion risk for freshwater fishes in South Africa. Bothalia – African Biodiversity & Conservation 47: 1–10.

    Google Scholar 

  • Metzeling, L., B. Chessman, R. Hardwick & V. Wong, 2003. Rapid assessment of rivers using macroinvertebrates: the role of experience, and comparisons with quantitative methods. Hydrobiologia 510: 39–52.

    Article  Google Scholar 

  • Nelson, J. S., 1994. Fishes of the World. Wiley, New York.

    Google Scholar 

  • Nimer, E., 1989. Climatologia do Brasil. IBGE, Rio de Janeiro.

    Google Scholar 

  • Nunes, A. L., E. Tricarico, V. E. Panov, A. Cardoso & S. Katsanevakis, 2015. Pathways and gateways of freshwater invasions in Europe. Aquatic Invasions 4: 359–370.

    Article  Google Scholar 

  • Olin, M., I. Malinen & J. Ruuhijarvi, 2009. Gillnet catch in estimating the density and structure of fish community-Comparison of gillnet and trawl samples in a eutrophic lake. Fisheries Research 96: 88–94.

    Article  Google Scholar 

  • Petrere Jr., M., R. B. Barthem, E. A. Córdoba & B. C. Gómez, 2004. Review of the large catfish fisheries in the upper Amazon and the stock depletion of piraíba (Brachyplatystoma filamentosum Lichtenstein). Reviews in Fish Biology and Fisheries 14: 403–414.

    Article  Google Scholar 

  • Sant, N., E. Chappuis, C. Rodríguez-Prieto, R. Montserrat & E. Ballesteros, 2017. Cost-benefit of three different methods for studying Mediterranean rocky benthic assemblages. Scientia Marina 81: 129–138.

    Article  Google Scholar 

  • Simberloff, D., M. Jean-Louis, P. Genovesi, V. Maris, D. A. Wardle, J. Aronson, F. Courchamp, B. Galil, E. García-Berthou, et al., 2013. Impacts of biological invasions: what’s what and the way forward. Trends in Ecology and Evolution 28: 58–66.

    Article  PubMed  Google Scholar 

  • Sutherland, W. J., 2001. The Conservation Handbook, Research, Management and Policy. Blackwell Science, Cornwall.

    Google Scholar 

  • Wu, R., Y. Long, G. P. Malanson, P. A. Garber, S. Zhang, D. Li, et al., 2014. Optimized spatial priorities for biodiversity conservation in China: a systematic conservation planning perspective. PLoS ONE 9: e103783.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zanden, M. J. V., G. J. A. Hansen, S. N. Higgins & M. S. Kornis, 2011. Invasive species early detection and eradication: a response to Horns (2011). Journal of Great Lakes Research 37: 595–596.

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the Fundo Nacional do Meio Ambiente (FNMA—Grant 80/2001), Ministry of Environment, and by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). The Instituto Estadual de Florestas de Minas Gerais (IEF-MG) and the Companhia Agrícola Florestal Santa Bárbara (CAF—Arcelor) provided logistic support. Thanks to Adelaine La Guardia for improvement in the English quality of this final version. The authors are grateful to the two anonymous reviewers who improved the clarity and quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anderson Oliveira Latini.

Additional information

Guest editors: John E. Havel, Sidinei M. Thomaz, Lee B. Kats, Katya E. Kovalenko & Luciano N. Santos / Aquatic Invasive Species II

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Latini, A.O., Petrere Júnior, M. Efficiency of rapid field methods for detecting non-native fish in Eastern Brazilian lakes. Hydrobiologia 817, 85–96 (2018). https://doi.org/10.1007/s10750-018-3624-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-018-3624-x

Keywords

Navigation