Skip to main content

Advertisement

Log in

Crowded waters: short-term response of invertebrate drift to water abstraction

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Water abstraction modifies the environmental conditions of stream ecosystems, which can affect invertebrate assemblages by altering drift. We examined this issue with a before–after–control–impact design experiment in which we diverted 90% of the natural flow from a headwater stream. We measured flow-reduction effects on drift densities (animals/m3), total drift rates (animals leaving the reach per hour) and net balance of invertebrates entering or leaving the Impact reach. We also identified the specific taxa and traits that drove these responses. The sudden decrease in flow promoted a 12-fold increase in overall drift density at the Impact reach, which was primarily driven by filterers, shredders and taxa associated with fast velocities, such as simulids. By contrast, drift densities of other abundant taxa, such as Baetis, Esolus and chironomids, increased less than what could be expected from the magnitude of flow reduction. While drift rates remained unchanged after water abstraction, the Impact reach became a net invertebrate exporter indicating that many taxa drifted actively as a response to stressful conditions rather than passively, which would be reduced by water abstraction. Therefore, our results suggest that water abstraction influences drift, with potentially important consequences for the invertebrate assemblages and ecosystem processes further downstream.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Alcamo, J. & J. Olesen, 2012. Life in Europe under Climate Change. John Wiley and Sons, Hoboken.

    Book  Google Scholar 

  • Allan, J. D., 1995. Stream Ecology: Structure and Function of Running Waters. Chapman and Hall, London.

    Book  Google Scholar 

  • Arroita, M., L. Flores, A. Larrañaga, A. Martínez, M. Martínez-Santos, O. Pereda, E. Ruiz-Romera, L. Solagaistua & A. Elosegi, 2017. Water abstraction impacts stream ecosystem functioning via wetted-channel contraction. Freshwater Biology 62: 243–257.

    Article  CAS  Google Scholar 

  • Baker, D. W., B. P. Bledsoe, C. M. Albano & N. L. Poff, 2011. Downstream effects of diversion dams on sediment and hydraulic conditions of Rocky Mountain streams. River Research and Applications 27: 388–401.

    Article  Google Scholar 

  • Beketov, M. A. & M. Liess, 2008. Potential of 11 pesticides to initiate downstream drift of stream macroinvertebrates. Archives of Environmental Contamination & Toxicology 55: 247–253.

    Article  CAS  Google Scholar 

  • Boulton, A. J., 2003. Parallels and contrasts in the effects of drought on stream macroinvertebrate assemblages. Freshwater Biology 48: 1173–1185.

    Article  Google Scholar 

  • Brittain, J. E. & T. J. Eikeland, 1988. Invertebrate drift: a review. Hydrobiologia 166: 77–93.

    Article  Google Scholar 

  • Brooks, A. J., B. Wolfenden, B. J. Downes & J. Lancaster, 2017. Do pools impede drift dispersal by stream insects? Freshwater Biology 62: 1578–1586.

    Article  Google Scholar 

  • Bunn, S. E. & A. H. Arthington, 2002. Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity. Environmental Management 30: 492–507.

    Article  PubMed  Google Scholar 

  • Burnham, K. P. & D. R. Anderson, 2002. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach, 2nd ed. Springer, New York.

    Google Scholar 

  • Charpentier, B. & A. Morin, 1994. Effect of current velocity on ingestion rates of black fly larvae. Canadian Journal of Fisheries and Aquatic Sciences 51: 1615–1619.

    Article  Google Scholar 

  • Chevenet, F., S. Dolédec & D. Chessel, 1994. A fuzzy coding approach for the analysis of long-term ecological data. Freshwater Biology 31: 295–309.

    Article  Google Scholar 

  • Dewson, Z. S., A. B. W. James & R. G. Death, 2007a. A review of the consequences of decreased flow for instream habitat and macroinvertebrates. Journal of the North American Benthological Society 26: 401–415.

    Article  Google Scholar 

  • Dewson, Z. S., A. B. W. James & R. G. Death, 2007b. Invertebrate responses to short-term water abstraction in small New Zealand streams. Freshwater Biology 52: 357–369.

    Article  CAS  Google Scholar 

  • Esnaola, A., J. González-Esteban, A. Elosegi, A. Arrizabalaga-Escudero & J. Aihartza, 2018. Need for speed: preference for fast-flowing water by the endangered semi-aquatic Pyrenean desman (Galemys pyrenaicus) in two contrasting streams. Marine and Freshwater Ecosystems, Aquatic Conservation. https://doi.org/10.1002/aqc.2893.

    Book  Google Scholar 

  • European Environment Agency, 2009. Water resources across Europe: confronting water scarcity and drought. EEA Report 2/2009. European Environment Agency, Copenhagen.

  • Finelli, C. M., D. D. Hart & R. Merz, 2002. Stream insects as passive suspension feeders: effects of velocity and food concentration on feeding performance. Oecologia 131: 145–153.

    Article  PubMed  Google Scholar 

  • Gasith, A. & V. H. Resh, 1999. Streams in Mediterranean climate regions: abiotic influences and biotic responses to predictable seasonal events. Annual Review of Ecology and Systematics 30: 51–81.

    Article  Google Scholar 

  • Green, R. H., 1979. Application of repeated measures designs in environmental impact and monitoring studies. Austral Ecology 18: 81–98.

    Article  Google Scholar 

  • Grossman, G. D., 2014. Not all drift feeders are trout: a short review of fitness-based habitat selection models for fishes. Environmental Biology of Fishes 97: 465–473.

    Article  Google Scholar 

  • Hammock, B. G. & W. C. Wetzel, 2013. The relative importance of drift causes for stream insect herbivores across a canopy gradient. Oikos 122: 1586–1593.

    Article  Google Scholar 

  • Harvey, B. C. R. J., R. J. Nakamoto & J. L. White, 2006. Reduced streamflow lowers dry-season growth of rainbow trout in a small stream. Transactions of the American Fisheries Society 135: 998–1005.

    Article  Google Scholar 

  • Hershkovitz, Y. & A. Gasith, 2013. Resistance, resilience, and community dynamics in mediterranean-climate streams. Hydrobiologia 719: 59–75.

    Article  Google Scholar 

  • Hoekstra, A. Y. & T. O. Wiedmann, 2014. Humanity’s unsustainable environmental footprint. Science 344: 1114–1117.

    Article  PubMed  CAS  Google Scholar 

  • Hoekstra, A. Y., M. M. Mekonnen, A. K. Chapagain, R. E. Mathews & B. D. Richter, 2012. Global monthly water scarcity: blue water footprints versus blue water availability. PLoS ONE 7: e32688.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • James, A. B. W., Z. S. Dewson & R. G. Death, 2007. The effect of experimental flow reductions on macroinvertebrate drift in natural and streamside channels. River Research and Applications 24: 22–35.

    Article  Google Scholar 

  • James, A. B. W., Z. S. Dewson & R. G. Death, 2009. The influence of flow reduction on macroinvertebrate drift density and distance in three New Zealand streams. Journal of the North American Benthological Society 28: 220–232.

    Article  Google Scholar 

  • Kinzie, R. A. I., C. Chong, J. Devrell, D. Lindstrom & R. Wolff, 2006. Effects of water removal on a Hawaiian stream ecosystem. Pacific Science 60: 1–47.

    Article  Google Scholar 

  • Lake, P. S., 2003. Ecological effects of perturbation by drought in flowing waters. Freshwater Biology 48: 1161–1172.

    Article  Google Scholar 

  • Lake, P. S., 2011. Drought and Aquatic Ecosystems. Wiley, Chichester.

    Book  Google Scholar 

  • Larsen, S. & S. J. Ormerod, 2010. Low-level effects of inert sediments on temperate stream invertebrates. Freshwater Biology 55: 476–486.

    Article  Google Scholar 

  • Lauridsen, R. B. & N. Friberg, 2005. Stream macroinvertebrate drift response to pulsed exposure of the synthetic pyrethroid lambda-cyhalothrin. Environmental Toxicology 20: 513–521.

    Article  PubMed  CAS  Google Scholar 

  • Leberfinger, K., I. Bohman & J. Herrmann, 2010. Drought impact on stream detritivores: experimental effects on leaf litter breakdown and life cycles. Hydrobiologia 652: 247–254.

    Article  Google Scholar 

  • Majdi, N., W. Traunspurger, J. S. Richardson & A. Lecerf, 2015. Small stonefly predators affect microbenthic and meiobenthic communities in stream leaf packs. Freshwater Biology 60: 1930–1943.

    Article  Google Scholar 

  • Minshall, G. W. & P. V. Winger, 1968. The effect of reduction in stream flow on invertebrate drift. Ecology 49: 580–582.

    Article  Google Scholar 

  • Naman, S. M., J. S. Rosenfeld & J. S. Richardson, 2016. Causes and consequences of invertebrate drift in running waters: from individuals to populations and trophic fluxes. Canadian Journal of Fisheries and Aquatic Sciences 73: 1292–1305.

    Article  Google Scholar 

  • Naman, S. M., J. S. Rosenfeld, J. S. Richardson & J. L. Way, 2017. Species traits and channel architecture mediate flow disturbance impacts on invertebrate drift. Freshwater Biology 62: 340–355.

    Article  Google Scholar 

  • Oksanen, J., F. G. Blanchet, M. Friendly, R. Kindt, P. Legendre, D. McGlinn, P. R. Minchin, R. B. O. Gavin, L. Simpson, P. Solymos, M. H. H. Stevens, E. Szoecs & H. Wagner, 2016. vegan: community ecology package. R package version 2.4-1. Available at https://CRAN.R-project.org/package=vegan.

  • Pinheiro, J., D. Bates, S. DebRoy, D. Sarkar & R Core Team 2017. nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1-131. Available at https://CRAN.R-project.org/package=nlme.

  • Poff, N. L. & J. V. Ward, 1991. Drift responses of benthic invertebrates to experimental stream flow variation in a hydrologically stable stream. Canadian Journal of Fisheries and Aquatic Sciences 48: 1926–1936.

    Article  Google Scholar 

  • Power, M. E., W. J. Matthews & A. J. Stewart, 1985. Grazing minnows, piscivorous bass, and stream algae: dynamics of a strong interaction. Ecology 66: 1448–1456.

    Article  Google Scholar 

  • R Core Team. 2015. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. Available at https://www.r-project.org/.

  • Rader, R. B., 1997. A functional classification of the drift: traits that influence invertebrate availability to salmonids. Canadian Journal of Fisheries and Aquatic Sciences 54: 1211–1234.

    Article  Google Scholar 

  • Rolls, R. J., C. Leigh & F. Sheldon, 2012. Mechanistic effects of low-flow hydrology on riverine ecosystems: ecological principles and consequences of alteration. Freshwater Science 31: 1163–1186.

    Article  Google Scholar 

  • Rosenfeld, J. S., 2017. Developing flow–ecology relationships: implications of nonlinear biological responses for water management. Freshwater Biology 62: 1305–1324.

    Article  Google Scholar 

  • Rosenfeld, J. S. & E. Raeburn, 2009. Effects of habitat and internal prey subsidies on juvenile coho salmon growth: implications for stream productive capacity. Ecology of Freshwater Fish 18: 572–584.

    Article  Google Scholar 

  • Schlief, J. & M. Mutz, 2009. Effect of sudden flow reduction on the decomposition of alder leaves (Alnus glutinosa [L.] Gaertn.) in a temperate lowland stream: a mesocosm study. Hydrobiologia 624: 205–217.

    Article  CAS  Google Scholar 

  • Tachet, H., P. Richoux, M. Bournaud & P. Usseglio-Polatera, 2010. Invertébrés D’eau Douce: Systématique, Biologie, Écologie. CNRS Éditions, Paris.

    Google Scholar 

  • Verberk, W. C. E. P., I. Durance, I. P. Vaughan & S. J. Ormerod, 2016. Field and laboratory studies reveal interacting effects of stream oxygenation and warming on aquatic ectotherms. Global Change Biology 22: 1769–1778.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wallace, J. B. & J. R. Webster, 1996. The role of macroinvertebrates in stream ecosystem function. Annual Review of Entomology 41: 115–139.

    Article  PubMed  CAS  Google Scholar 

  • Wilcox, A. C., B. L. Peckarsky, B. W. Taylor & A. C. Encalada, 2008. Hydraulic and geomorphic effects on mayfly drift in high-gradient streams at moderate discharges. Ecohydrology 1: 176–186.

    Article  Google Scholar 

  • Wooster, D., S. W. Miller & S. J. DeBano, 2016. Impact of season-long water abstraction on invertebrate drift composition and concentration. Hydrobiologia 772: 15–30.

    Article  Google Scholar 

Download references

Acknowledgements

The funding for this work was provided by the Spanish Ministry of Economy and Competitiveness and FEDER through the ABSTRACT CGL2012-35848 project. We thank the staff of Artikutza for their support that made feasible nocturnal sampling. S. Naman provided English edits.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José M. González.

Additional information

Handling editor: Verónica Ferreira

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

González, J.M., Recuerda, M. & Elosegi, A. Crowded waters: short-term response of invertebrate drift to water abstraction. Hydrobiologia 819, 39–51 (2018). https://doi.org/10.1007/s10750-018-3620-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-018-3620-1

Keywords

Profiles

  1. Arturo Elosegi