Skip to main content

Advertisement

Log in

A multigear protocol for sampling crayfish assemblages in Gulf of Mexico coastal streams

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Identifying an effective protocol for sampling crayfish in streams that vary in habitat and physical/chemical characteristics has proven problematic. We evaluated an active, combined-gear (backpack electrofishing and dipnetting) sampling protocol in 20 Coastal Plain streams in Louisiana. Using generalized linear models and rarefaction curves, we evaluated environmental and gear (separate and combined) effects on crayfish catch-per-unit-effort (CPUE), orbital carapace lengths, sex ratios, frequencies of rare species, and sample richness. Although pooled data from combined gears showed greater total numbers of crayfishes, CPUE, and richness compared to either gear individually, combined gear and backpack electrofisher results differed minimally. Overall, richness was negatively related to specific conductance, indicating potential agricultural influence. Neither crayfish sex ratios, lengths, nor frequencies of rare species differed by gear; however, combining data from both gears ensured crayfish were captured in all study streams, which was not found for electrofishing or dipnetting alone. Species accumulation and rarefaction curves indicated sampling was sufficient for recording crayfish diversity at the scale of the study and that adding streams (versus sites within streams) would be most effective for watershed-scale studies. Our results suggested the combined gear protocol was effective for assessing crayfish population and assemblage characteristics in these Coastal Plain streams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Allan, J. D., 2004. Landscapes and riverscapes: the influence of land use on stream ecosystems. Annual Review of Ecology and Systematics 35: 257–284.

    Article  Google Scholar 

  • Allen, D. C. & C. C. Vaughn, 2010. Complex hydraulic and substrate variables limit freshwater mussel species richness and abundance. Journal of the North American Benthological Society 29: 383–394.

    Article  Google Scholar 

  • Alonso, F., 2001. Efficiency of electrofishing as a sampling method for freshwater crayfish populations in small creeks. Limnetica 20: 59–72.

    Google Scholar 

  • Beck, J. & W. Schwanghart, 2010. Comparing measures of species diversity from incomplete inventories: an update. Methods in Ecology and Evolution 1: 38–44.

    Article  Google Scholar 

  • Birk, S. & D. Hering, 2009. A new procedure for comparing class boundaries of biological assessment methods: a case study from the Danube Basin. Ecological Indicators 9: 528–539.

    Article  CAS  Google Scholar 

  • Brown, A. V. & W. J. Matthews, 2006. Stream ecosystems of the central United States. In Cushing, C. E., K. W. Cummins & G. W. Minshall (eds), River and Stream Ecosystems of the World, 2nd ed. University of California Press, Berkeley: 89–116.

    Google Scholar 

  • Burskey, J. L. & T. P. Simon, 2010. Reach-and watershed-scale associations of crayfish within an area of varying agricultural impact in west-central Indiana. Southeastern Naturalist 9: 199–216.

    Article  Google Scholar 

  • Clifford, H. F. & R. J. Casey, 1992. Differences between operators in collecting quantitative samples of stream macroinvertebrates. Journal of Freshwater Ecology 7: 271–276.

    Article  Google Scholar 

  • Coddington, J. A., I. Agnarsson, J. A. Miller, M. Kuntner & G. Hormiga, 2009. Undersampling bias: the null hypothesis for singleton species in tropical arthropod surveys. Journal of Animal Ecology 78: 573–584.

    Article  PubMed  Google Scholar 

  • Colwell, R. K., A. Chao, N. J. Gotelli, S.-Y. Lin, C. X. Mao, R. L. Chazdon & J. T. Longino, 2012. Models and estimators linking individual-based and sample-based rarefaction, extrapolation and comparison of assemblages. Journal of Plant Ecology 5: 3–21.

    Article  Google Scholar 

  • Crandall, K. A. & J. E. Buhay, 2008. Global diversity of crayfish (Astacidae, Cambaridae, and Parastacidae – Decapoda) in freshwater. Hydrobiologia 595: 295–301.

    Article  Google Scholar 

  • Creed Jr., R. P., 1994. Direct and indirect effects of crayfish grazing in a stream community. Ecology 75: 2091–2103.

    Article  Google Scholar 

  • Daigle, J. J., G. E. Griffith, J. M. Omernik, P. L. Faulkner, R. P. McCullogh, L. R. Handley, L. M. Smith & S. S. Chapman, 2006. Ecoregions of Louisiana (2 Sided Color Poster with Map, Descriptive Text, Summary Tables, and Photographs). U.S.G. Survey, Reston.

    Google Scholar 

  • DiStefano, R. J., C. M. Gale, B. A. Wagner & R. D. Zweifel, 2003. A sampling method to assess lotic crayfish communities. Journal of Crustacean Biology 23: 678–690.

    Article  Google Scholar 

  • Dorn, N. J. & J. C. Volin, 2009. Resistance of crayfish (Procambarus spp.) populations to wetland drying depends on species and substrate. Journal of the North American Benthological Society 28: 766–777.

    Article  Google Scholar 

  • Dorn, N. J., R. Urgelles & J. C. Trexler, 2005. Evaluating active and passive sampling methods to quantify crayfish density in a freshwater wetland. Journal of the North American Benthological Society 24: 346–356.

    Article  Google Scholar 

  • Dudgeon, D., 1995. River regulation in southern China: ecological implications, conservation and environmental management. River Research and Applications 11: 35–54.

    Google Scholar 

  • Engelbert, B. S., C. A. Taylor & R. J. DiStefano, 2016. Development of standardized stream-dwelling crayfish sampling methods at site and drainage scales. North American Journal of Fisheries Management 36: 104–115.

    Article  Google Scholar 

  • Felley, J. D., 1992. Medium-low-gradient streams of the Gulf Coastal Plain. In Hackney, C. T., S. M. Adams & W. Martin (eds), Biodiversity of the Southeastern United States. Wiley, New York.

    Google Scholar 

  • Felley, J. D. & G. L. Daniels, 1992. Life history of the sailfin molly (Poecilia latipinna) in two degraded waterways of southwestern Louisiana. The Southwestern Naturalist 37: 16–21.

    Article  Google Scholar 

  • Fitzgerald, A., 2012. Effects of varying land use on headwater stream fish assemblages and in-stream habitats in southwestern Louisiana. Louisiana State University.

  • Flinders, C. A. & D. D. Magoulick, 2007. Habitat use and selection within Ozark lotic crayfish assemblages: spatial and temporal variation. Journal of Crustacean Biology 27: 242–254.

    Article  Google Scholar 

  • Gomi, T., R. C. Sidle & J. S. Richardson, 2002. Understanding processes and downstream linkages of headwater systems: headwaters differ from downstream reaches by their close coupling to hillslope processes, more temporal and spatial variation, and their need for different means of protection from land use. BioScience 52: 905–916.

    Article  Google Scholar 

  • Gorman, O. T. & J. R. Karr, 1978. Habitat structure and stream fish communities. Ecology 59: 507–515.

    Article  Google Scholar 

  • Gotelli, N. J. & R. K. Colwell, 2011. Estimating species richness. Biological Diversity 12: 39–54.

    Google Scholar 

  • Harlioğlu, M. M., 1999. The efficiency of the Swedish trappy in catching freshwater crayfish Pacifastacus leniusculus and Astacus leptodactylus. Turkish Journal of Zoology 23: 93–98.

    Google Scholar 

  • Holcomb, S. R., A. A. Bass, C. S. Reid, M. A. Seymour, N. F. Lorenz, B. B. Gregory, S. M. Javed & K. F. Balkum, 2015. Louisiana Wildlife Action Plan. Louisiana Department of Wildlife and Fisheries, Baton Rouge.

    Google Scholar 

  • Isphording, W. C. & J. F. Fitzpatrick, 1992. Geologic and evolutionary history of drainage systems in the southeastern United States. In Hackney, C. T., S. M. Adams & W. H. Martin (eds), Biodiversity of the Southeastern United States, Aquatic Communities. Wiley, New York: 19–56.

    Google Scholar 

  • Jackson, D. A. & H. H. Harvey, 1997. Qualitative and quantitative sampling of lake fish communities. Canadian Journal of Fisheries and Aquatic Sciences 54: 2807–2813.

    Article  Google Scholar 

  • Kaller, M. D. & W. E. Kelso, 2007. Association of macroinvertebrate assemblages with dissolved oxygen concentration and wood surface area in selected subtropical streams of the southeastern USA. Aquatic Ecology 41: 95–110.

    Article  CAS  Google Scholar 

  • Kaller, M. D., C. E. Murphy, W. E. Kelso & M. R. Stead, 2013. Basins for fish and ecoregions for macroinvertebrates: different spatial scales are needed to assess Louisiana wadeable streams. Transactions of the American Fisheries Society 142: 767–782.

    Article  Google Scholar 

  • Kershner, M. W. & D. M. Lodge, 1995. Effects of littoral habitat and fish predation on the distribution of an exotic crayfish, Orconectes rusticus. Journal of the North American Benthological Society 14: 414–422.

    Article  Google Scholar 

  • Kimmel, W. G. & D. G. Argent, 2010. Stream fish community responses to a gradient of specific conductance. Water, Air, and Soil Pollution 206: 49–56.

    Article  CAS  Google Scholar 

  • Knight, J. G. & M. B. Bain, 1996. Sampling fish assemblages in forested floodplain wetlands. Ecology of Freshwater Fish 5: 76–85.

    Article  Google Scholar 

  • Kuznetsova, A., B. Brockhoff & H. B. Christensen, 2016. lmerTEST: Tests in Linear Mixed effects Models. R package version 20-33.

  • Lake, P. S., 1995. Of floods and droughts: river and stream ecosystems of Australia. In Cushing, C. E., K. W. Cummings & G. W. Minshall (eds), Ecosystems of the World. Elsevier, Amsterdam: 659–694.

    Google Scholar 

  • Larson, E. R. & J. D. Olden, 2016. Field sampling techniques for crayfish. In Longshaw, M. & P. Stebbing (eds), Biology and Ecology of Crayfish. CRC Press, Boca Raton: 287–323.

    Chapter  Google Scholar 

  • Lefcheck, J. S., 2016. piecewiseSEM: piecewise structural equation modelling in r for ecology, evolution, and systematics. Methods in Ecology and Evolution 7: 573–579.

    Article  Google Scholar 

  • Legendre, P. & L. F. J. Legendre, 2012. Numerical Ecology, Vol. 24. Elsevier, Amsterdam.

    Google Scholar 

  • Mason, J. C., 1975. Crayfish production in a small woodland stream. Freshwater Crayfish 2: 449–479.

    Google Scholar 

  • Moore, W. G., 1970. Limnological studies of temporary ponds in southeastern Louisiana. The Southwestern Naturalist 15: 83–110.

    Article  Google Scholar 

  • Moore, M. J., R. J. DiStefano & E. R. Larson, 2013. An assessment of life-history studies for USA and Canadian crayfishes: identifying biases and knowledge gaps to improve conservation and management. Freshwater Science 32(4): 1276–1287.

    Article  Google Scholar 

  • Nakagawa, S. & H. Schielzeth, 2013. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods in Ecology and Evolution 4: 133–142.

    Article  Google Scholar 

  • Neves, R. J., A. E. Bogan, J. D. Williams, S. A. Ahlstedt & P. W. Hartfield, 1997. Status of aquatic mollusks in the southeastern United States: a downward spiral of diversity. Aquatic Fauna in Peril: The Southeastern Perspective Special Publication 1: 44–86.

    Google Scholar 

  • Oksanen, J., F. G. Blanchet, M. Friendly, R. Kindt, P. Legendre, D. McGlinn, P. Minchin, R. B. O’hara, G. L. Simpson, P. Solymos, M. H. H. Stevens, E. Szoecs, & H. Wagner, 2017. vegan: Community Ecology Package. R Package Version 24-2.

  • Paillisson, J. M., A. Soudieux & J. P. Damien, 2011. Capture efficiency and size selectivity of sampling gears targeting red-swamp crayfish in several freshwater habitats. Knowledge and Management of Aquatic Ecosystems. https://doi.org/10.1051/kmae/2011015.

    Article  Google Scholar 

  • Parkyn, S. M., 2015. A review of current techniques for sampling freshwater crayfish. In Kawai, T., Z. Faulkes & G. Scholtz (eds), Freshwater Crayfish. CRC Press, Boca Raton: 205–220.

    Chapter  Google Scholar 

  • Price, J. E. & S. M. Welch, 2009. Semi-quantitative methods for crayfish sampling: sex, size, and habitat bias. Journal of Crustacean Biology 29: 208–216.

    Article  Google Scholar 

  • Rabeni, C. F., K. J. Collier, S. M. Parkyn & B. J. Hicks, 1997. Evaluating techniques for sampling stream crayfish (Paranephrops planifrons). New Zealand Journal of Marine and Freshwater Research 31: 693–700.

    Article  Google Scholar 

  • Reynolds, J. B. & L. A. Koltz, 2013. Electrofishing. In Zale, A. V., D. L. Parrish & T. M. Sutton (eds), Fisheries Techniques, 3rd ed. American Fisheries Society, Bethesda: 305–361.

    Google Scholar 

  • Richman, N. I., M. Böhm, S. B. Adams, F. Alvarez, E. A. Bergey, J. J. Bunn, Q. Burnham, J. Cordeiro, J. Coughran & K. A. Crandall, 2015. Multiple drivers of decline in the global status of freshwater crayfish (Decapoda: Astacidea). Philosophical Transactions of the Royal Society of London B: Biological Sciences 370: 20140060.

    Article  PubMed  Google Scholar 

  • Ruetz, C. R., D. G. Uzarski, D. M. Krueger & E. S. Rutherford, 2007. Sampling a Littoral Fish Assemblage: comparison of Small-Mesh Fyke Netting and Boat Electrofishing. North American Journal of Fisheries Management 27: 825–831.

    Article  Google Scholar 

  • Somers, K. M. & D. P. M. Stechey, 1986. Variable trappability of crayfish associated with bait type, water temperature and lunar phase. American Midland Naturalist 116: 36–44.

    Article  Google Scholar 

  • Sørensen, L. L., J. A. Coddington & N. Scharff, 2002. Inventorying and estimating subcanopy spider diversity using semiquantitative sampling methods in an Afromontane forest. Environmental Entomology 31: 319–330.

    Article  Google Scholar 

  • Taylor, C. A., G. A. Schuster, J. E. Cooper, R. J. DiStefano, A. G. Eversole, P. Hamr, H. H. Hobbs III, H. W. Robison, C. E. Skelton & R. F. Thoma, 2007. A reassessment of the conservation status of crayfishes of the United States and Canada after 10+ years of increased awareness. Fisheries 32: 372–389.

    Article  Google Scholar 

  • R Core Team, 2016. R: A Language and Environment for Statistical Computing.

  • Thorp, J. H. & A. P. Covich, 2009. Ecology and Classification of North American Freshwater Invertebrates. Academic Press, London.

    Google Scholar 

  • Venables, W. N. & B. D. Ripley, 2002. Modern Applied Statistics with S. Springer, New York.

    Book  Google Scholar 

  • Wallace, J. B. & A. C. Benke, 1984. Quantification of wood habitat in subtropical coastal plain streams. Canadian Journal of Fisheries and Aquatic Sciences 41: 1643–1652.

    Article  Google Scholar 

  • Walls, J. G., 2009. The Crawfishes of Louisiana. Louisiana State University Press, Baton Rouge.

    Google Scholar 

  • Walser, C. A. & H. L. Bart, 1999. Influence of agriculture on in-stream habitat and fish community structure in Piedmont watersheds of the Chattahoochee River System. Ecology of Freshwater Fish 8: 237–246.

    Article  Google Scholar 

  • Warren Jr., M. L., B. M. Burr, S. J. Walsh, H. L. Bart Jr., R. C. Cashner, D. A. Etnier, B. J. Freeman, B. R. Kuhajda, R. L. Mayden & H. W. Robison, 2000. Diversity, distribution, and conservation status of the native freshwater fishes of the southern United States. Fisheries 25: 7–31.

    Article  Google Scholar 

  • Weaver, M. J., J. J. Magnuson & M. K. Clayton, 1993. Analyses for differentiating littoral fish assemblages with catch data from multiple sampling gears. Transactions of the American Fisheries Society 122: 1111–1119.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Brad Hester, Michael Baker, Kayla Smith, Samantha Lott, and Ivan Vargas-Lopez for their assistance with field work and collections; and Tiffany Pasco, A. Raynie Harlan, and Joshua Herron for their assistance with equipment and vehicles. We also thank our two anonymous reviewers for their very helpful suggestions, which improved this manuscript. Animals sacrificed for this study were deposited in the Louisiana State University School of Renewable Natural Resources, the Louisiana State University Agricultural Center, Freshwater Ecology Laboratory. The research was supported by the National Institute of Food and Agriculture, the U.S. Department of Agriculture, under the McIntire-Stennis Cooperative Forestry Program as project number LAB-94171. This manuscript was approved for publication by the Director of the Louisiana Agricultural Experiment Station as manuscript 2016-241-25986.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William R. Budnick.

Additional information

Handling editor: Eric Larson

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 22 kb)

10750_2018_3619_MOESM2_ESM.tif

Supplementary material 2 Fig. S1 Frequency histograms of crayfish total length distributions (4 mm bin width) by time of day and gear type (TIFF 73 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Budnick, W.R., Kelso, W.E., Adams, S.B. et al. A multigear protocol for sampling crayfish assemblages in Gulf of Mexico coastal streams. Hydrobiologia 822, 55–67 (2018). https://doi.org/10.1007/s10750-018-3619-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-018-3619-7

Keywords

Navigation