, Volume 818, Issue 1, pp 235–247 | Cite as

Identification of potential recruitment bottlenecks in larval stages of the giant fan mussel Pinna nobilis using specific quantitative PCR

  • Karl B. Andree
  • Sergio Trigos
  • Nardo Vicente
  • Noelia Carrasco
  • Francesca Carella
  • Patricia Prado
Primary Research Paper


Pinna nobilis is an endangered species of fan mussel found along coastal Mediterranean waters requiring special attention for conservation. Populations are restricted in number, due to anthropogenic disturbances, disease, and in some areas, low rates of recruitment. To date, the difficulties associated with the identification of planktonic stages have prompted the use of benthic collectors as a proxy for quantifying larval supply, despite important information being lost regarding planktonic processes. We present evidence of spawning utilizing a qPCR assay developed for detecting genomic DNA of P. nobilis to enable specific identification of planktonic stages to augment knowledge of P. nobilis life history. In the Ebro Delta, Spain, it has been used to study what might be limiting their reproduction locally. We demonstrate the ability to differentiate DNA of P. nobilis from other bivalve mollusks and distinguish between fertilized and unfertilized eggs of P. nobilis, which may be a crucial point for understanding the low level of recruitment seen in this natural population. We also show evidence of larval presence during the expected spawning period, although abundance in positive samples were so low that they pose new questions about factors controlling the availability of planktonic stages of P. nobilis.


Shellfish larvae Western Mediterranean Pinna qPCR 



The authors wish to thank the Zoo Barcelona Foundation for an Antoni Jonch Grant 2015, which provided the economic support necessary to accomplish this work. Authors are very grateful to Dr. Miguel Alonso García-Amilivia for the construction of the zooplankton micro-spoon for the collection of P. nobilis eggs and larvae. Also, authors would like to thank Pep Cabanes, Lluis Jornet, and David Mateu for technical assistance during fieldwork sampling in Alfacs Bay.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Andree, K. B., S. Quijano-Scheggia, M. Fernández, L. M. Elandaloussi, E. Garcés, J. Camp & J. Diogene, 2011. Quantitative PCR coupled with melt curve analysis for detection of selected Pseudo-nitzschia spp. (Bacillariophyceae) from the northwestern Mediterranean Sea. Applied and Environmental Microbiology 77: 1651–1659.CrossRefPubMedGoogle Scholar
  2. Bennett, R. M., G. T. Gabor & M. M. Merritt, 1985. DNA binding to human leukocytes. Evidence for a receptor-mediated association, internalization, and degradation of DNA. Journal of Clinical Investigation 76: 2182–2190.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Butler, A., N. Vicentem & B. De Gaulejac, 1993. Ecology of de pterioid bivalves Pinna bicolor Gmelin and P. nobilis L. Marine Life 3: 37–45.Google Scholar
  4. Centoducati, G., E. Tarsitano, A. Bottalico, M. Marvulli, O. R. Lai & G. Crescenzo, 2007. Monitoring of the endangered Pinna nobilis Linné, 1758 in the Mar Grande of Taranto (Ionian Sea, Italy). Environtal Monitoring and Assessment 131: 339–347.CrossRefGoogle Scholar
  5. Chen, X., D. M. Kube, M. J. Cooper & P. B. Davis, 2008. Cell surface nucleolin serves as receptor for DNA nanoparticles composed of pegylated polylysine and DNA. American Society of Gene Therapy 16: 333–342.CrossRefGoogle Scholar
  6. Chícharo, L. & M. A. Chícharo, 2001. A juvenile recruitment prediction model for Ruditapes decussatus (L.) (Bivalvia: Mollusca). Fisheries Research 53: 219–233.CrossRefGoogle Scholar
  7. Coppa, S., G. A. de Lucia, P. Magni, P. Domenici, F. Antognarelli, A. Satta & A. Cucco, 2013. The effect of hydrodynamics on shell orientation and population density of Pinna nobilis in the Gulf of Oristano (Sardinia, Italy). Journal of Sea Research 76: 201–210.CrossRefGoogle Scholar
  8. Darriba, S., 2017. First haplosporidan parasite reported infecting a member of the Superfamily Pinnoidea (Pinna nobilis) during a mortality event in Alicante (Spain, Western Mediterranean). Journal of Invertebrate Pathology 148: 14–19.CrossRefPubMedGoogle Scholar
  9. De Gaulejac, B. & N. Vicente, 1990. Ecologie de Pinna nobilis (L.) mollusque bivalve sur les côtes de Corse. Essais de transplantation et expériences en milieu contrôlé. Haliotis 10: 83–100.Google Scholar
  10. Dejean, T., A. Valentini, A. Duparc, S. Pellier-Cuit, F. Pompanon, P. Taberlet & C. Miaud, 2011. Persistence of environmental DNA in freshwater ecosystems. PLoS ONE 6: e23398.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Ebert, T. A., 1983. Recruitment in echinoderms. Echinoderm Studies 1: 169–203.Google Scholar
  12. Endo, N., K. Sato & Y. Nogata, 2009. Molecular based method for the detection and quantification of larvae of the golden mussel Limnoperna fortunei using real-time PCR. Plankton Benthos Research 4: 125–128.CrossRefGoogle Scholar
  13. Endo, N., K. Matsumura, E. Yoshimura, Y. Odaka & Y. Nogata, 2010. Species-specific detection and quantification of common barnacle larvae from the Japanese coast using real time PCR. Biofouling 26: 901–911.CrossRefPubMedGoogle Scholar
  14. Escartin, E. & C. Porte, 1997. The use of cholinesterase and carboxylesterase activities from Mytilus galloprovincialis in pollution monitoring. Environmental Toxicology and Chemistry 16: 2090–2095.CrossRefGoogle Scholar
  15. Ficetola, G. F., C. Miaud, F. Pompanon & P. Taberlet, 2008. Species detection using environmental DNA from water samples. Biology Letters 4: 423–425.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Frischer, M. E., A. S. Hansen, J. A. Wyllie, J. Wimbush, J. Murray & S. A. Nierzwicki- Bauer, 2002. Specific amplification of the 18S rRNA gene as a method to detect zebra mussel (Dreissena polymorpha) larvae in plankton samples. Hydrobiologia 487: 33–44.CrossRefGoogle Scholar
  17. Frye, C., E. Bo, L. Calzà, F. Dessì-Fulgheri, M. Fernández, L. Fusani, O. Kah, M. Kajta, Y. Le Page, H. B. Patisaul, A. Venerosi, A. K. Wojtowicz & G. C. Panzica, 2012. Endocrine disruptors: a review of some sources, effects, and mechanisms of action on behavior and endocrine systems. Journal of Neuroendocrinology 24: 144–159.CrossRefPubMedPubMedCentralGoogle Scholar
  18. García-March, J. R. & D. K. Kersting, 2006. Preliminary data on the distribution and density of Pinna nobilis and Pinna rudis in the Columbretes Islands Marine Reserve (Western Mediterranean, Spain). Organisms Diversity and Evolution 6: 06–16.Google Scholar
  19. Gonzalez-Wanguemert, M., J. Costa, L. Basso, C. M. Duarte, E. A. Serrao & I. Hendriks, 2015. Highly polymorphic microsatellite markers for the Mediterranean endemic fan mussel Pinna nobilis. Mediterranean Marine Science 16: 31–35.CrossRefGoogle Scholar
  20. Guallart, J., & J. Templado, 2012. Pinna nobilis. In: VV. AA., Bases ecológicas preliminares para la conservación de las especies de interés comunitario en España: Invertebrados. Ministerio de Agricultura, Alimentación y Medio Ambiente, Madrid: 81.Google Scholar
  21. Hall, T. A., 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41: 95–98.Google Scholar
  22. Johzuka, K. & T. Horiuchi, 2002. Replication fork block protein, Fob1, acts as an rDNA region specific recombinator in S. cerevisiae. Genes to Cells 7: 99–113.CrossRefPubMedGoogle Scholar
  23. Katsanevakis, S., 2007. Growth and mortality rates of the fan mussel Pinna nobilis in Lake Vouliagmeni (Korinthiakos Gulf, Greece): a generalized additive modelling approach. Marine Biology 152: 1319–1331.CrossRefGoogle Scholar
  24. Kersting, D. K., & J. R. García-March, 2007. Preliminary data on Pinna nobilis larval recruitment using mesh collectors in Columbretes Islands Marine Reserve, NW Mediterranean. In: European Symposium on Marine Protected Areas. Murcia, 25th–28th September 2007.Google Scholar
  25. Lemer, S., B. Buge, A. Bemis & G. Giribet, 2014. First molecular phylogeny of the circumtropical bivalve family Pinnidae (Mollusca, Bivalvia): evidence for high levels of cryptic species diversity. Mol Phylo Evol 75: 11–23.CrossRefGoogle Scholar
  26. Lewis, C. & A. T. Ford, 2012. Infertility in male aquatic invertebrates: a review. Aquatic Toxicology 120: 79–89.CrossRefPubMedGoogle Scholar
  27. Malchus, N. & A. F. Sartori, 2013. Part N, Revised, Volume 1, Chapter 4: the early shell: ontogeny, features, and evolution. Treatise Online 61: 1–114.Google Scholar
  28. Mañosa, S., R. Mateo & R. Guitart, 2001. A review of the effects of agricultural and industrial contamination on the Ebro Delta Biota and wildlife. Environmental Monitoring and Assessment. 71: 187–205.CrossRefPubMedGoogle Scholar
  29. Marbà, N., C. M. Duarte, J. Cebrián, M. E. Gallegos, B. Olesen & K. Sand-Jensen, 1996. Growth and population dynamics of Posidonia oceanica on the Spanish Mediterranean coast: elucidating seagrass decline. Marine Ecology Progress Series 137: 203–213.CrossRefGoogle Scholar
  30. Porri, F., C. D. McQuaid & S. Radloff, 2006. Spatio-temporal variability of larval abundance and settlement of Perna perna: differential delivery of mussels. Marine Ecology Progress Series 315: 141–150.CrossRefGoogle Scholar
  31. Prado, P., F. Tomas, S. Pinna, S. Farina, G. Roca, G. Ceccherelli, J. Romero & T. Alcoverro, 2012. Habitat and scale shape the demographic fate of the keystone sea urchin Paracentrotus lividus in mediterranean macrophyte communities. PloS ONE 7: e35170.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Prado, P., N. Caiola & C. Ibáñez, 2014. Habitat use by a large population of Pinna nobilis in shallow waters. Scientia Marina 78: 555–565.CrossRefGoogle Scholar
  33. Read, L. R., S. J. Raynard, A. Rukść & M. D. Baker, 2004. Gene repeat expansion and contraction by spontaneous intrachromosomal homologous recombination in mammalian cells. Nucleic Acids Research 32: 1184–1196.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Robert, R. & A. Gerard, 1999. Bivalve hatchery technology: the current situation for the Pacific oyster Crassostrea gigas and the scallop Pecten maximus in France. Aquatic Living Resources 12(2): 121–130.CrossRefGoogle Scholar
  35. Sanna, D., P. Cossu, G. L. Dedola, F. Scarpa, F. Maltagliati, A. Castelli, P. Franzoi, T. Lai, B. Cristo, M. Curini-Galletti, P. Francalacci & M. Casu, 2013. Mitochondrial DNA reveals genetic structuring of Pinna nobilis across the Mediterranean Sea. PloS ONE 8(6): e67372.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Sanna, D., G. L. Dedola, F. Scarpa, T. Lai, P. Cossu, M. Curini-Galletti, P. Francalacci & M. Casu, 2014. New mitochondrial and nuclear primers for the Mediterranean marine bivalve Pinna nobilis. Mediterranean Marine Science 15(2): 416–422.CrossRefGoogle Scholar
  37. Siletic, T. & M. Peharda, 2003. Population study of the fan shell Pinna nobilis in Malo and Veliko Jezero of the Mljet National Park (Adriatic Sea). Scientia Marina 67: 91–98.CrossRefGoogle Scholar
  38. Terrado, M., M. Kuster, D. Raldúa, M. Lopez de Alda, D. Barceló & R. Tauler, 2007. Use of chemometric and geostatistical methods to evaluate pesticide pollution in the irrigation and drainage channels of the Ebro river delta during the rice-growing season. Anal Bioanal Chem. 387: 1479–1488.CrossRefPubMedGoogle Scholar
  39. Trigos, S., 2017. Estudio de la ecofisiología y ensayo de cultivo de la nacra Pinna nobilis Linnaeus, 1758. PhD Thesis, Facultad de Veterinaria y Ciencias Experimentales, Universidad Católica de Valencia.Google Scholar
  40. Trigos, S., N. Vicente, P. Prado & F. J. Espinós, 2017. Adult spawning and early larval development of the endangered bivalve Pinna nobilis. Aquaculture 483: 102–110.CrossRefGoogle Scholar
  41. Vadopalas, B., J. V. Bouma, C. R. Jackels & C. S. Friedman, 2006. Application of real-time PCR for simultaneous identification and quantification of larval abalone. Journal of Experimental Marine Biology and Ecology 334: 219–228.CrossRefGoogle Scholar
  42. Wesselmann, M., M. González-Wangüemert, E. A. Serrão, A. H. Engelen, L. Renault, J. R. García-March, C. M. Duarte & Iris. E. Hendriks, 2018. Genetic and oceanographic tools reveal high population connectivity and diversity in the endangered pen shell Pinna nobilis. Scientific Reports 8(4770): 1–11.Google Scholar
  43. Wilcox, T. M., K. S. McKelvey, M. K. Young, S. F. Jane, W. H. Lowe, A. R. Whiteley & M. K. Schwartz, 2013. Robust detection of rare species using environmental DNA: the importance of primer specificity. PLoS ONE 8: e59520.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Wren, J. D., E. Forgacs, J. W. Fondon III, A. Pertsemlidis, S. Y. Cheng, T. Gallardo, R. S. Williams, R. V. Shohet, J. D. Minna & H. R. Garner, 2000. Repeat polymorphisms within gene regions: phenotypic and evolutionary implications. American Journal of Human Genetics 67: 345–356.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Zakhama-Sraieb, R., Y. R. Sghaier, A. Omrane & F. Charfi-Cheikhrouha, 2011. Density and population structure of Pinna nobilis (Mollusca, Bivalvia) in the Ghar El Melh lagoon (N-E Tunisia). Bulletin de l’Institut National des Sciences et Technologies de la Mer de Salammbô 38: 65–71.Google Scholar
  46. Zavodnik, D., M. Brenko & M. Legac, 1991. Synopsis on the fan shell Pinna nobilis L. in the eastern Adriatic Sea. In Boudouresque, C. F., M. Avon & V. Gravez (eds), Les Espèces Marines à Protéger en Méditerranée. GIS Posidonie, Marseille: 169–178.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.IRTA-Aquatic Ecosystems, CtraSant Carles de la RàpitaSpain
  2. 2.Innovation Network in Aquaculture Industries of the Valencian Community (RIIA-CV)ValenciaSpain
  3. 3.Institue Océanographique Paul RicardSix Fours Les PlagesFrance
  4. 4.Institut Méditerranéen de la Biodiversité et de L´Ecologie Marine et Continentale (IMBE), Aix Marseille UniversitéMarseilleFrance
  5. 5.Department of BiologyUniversity of Naples Federico IINaplesItaly

Personalised recommendations