Skip to main content

Advertisement

Log in

Artificial reefs for sea cucumber aquaculture confirmed as settlement substrates of the moon jellyfish Aurelia coerulea

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

In coastal areas with a high intensity of human activities, expansion of artificial structures may enhance Aurelia spp. blooms because these constructions may provide additional substrates for the settlement and proliferation of the polyps. In the present study, the possible occurrence and distribution of Aurelia coerulea ephyrae and polyps were investigated in sea cucumber (Apostichopus japonicus) culture ponds that contain huge amounts of artificial structures. Our results showed that A. coerulea ephyrae were widely distributed in the A. japonicus culture ponds along the Bohai and Yellow Seas. Furthermore, underwater photography revealed that polyps of A. coerulea mainly occurred on the undersides of the artificial reefs made by plastic sunshade nets, tiles and substrate cages. The artificial reefs may decrease the time A. coerulea planulae spend settling, provide more hidden, calm and shady places for the settlement and proliferation of A. coerulea planulae, and thus were suitable substrates for the moon jellyfish A. coerulea. Our study suggests that the A. japonicus culture ponds may act as nursery grounds for the jellyfish A. coerulea and may potentially enhance the blooms of this species in the coastal waters along the Bohai and Yellow Seas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Arai, M. N., 2001. Pelagic coelenterates and eutrophication: a review. Hydrobiologia 451: 69–87.

    Article  Google Scholar 

  • Baxter, E. J., M. M. Sturt, N. M. Ruane, T. K. Doyle, R. McAllen, L. Harman & H. D. Rodger, 2011. Gill damage to Atlantic salmon (Salmo salar) caused by the common jellyfish (Aurelia aurita) under experimental challenge. PLoS ONE 6: e18529.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bonnet, D., J. C. Molinero, T. Schohn & M. N. Daly Yahia, 2012. Seasonal changes in the population dynamics of Aurelia aurita in Thau lagoon. Cahiers de Biologie Marine 53: 343–347.

    Google Scholar 

  • Brewer, R. H., 1978. Larval settlement behavior in the jellyfish Aurelia aurita (Linnaeus) (Scyphozoa: Semaeostomeae). Estuaries 1: 120–122.

    Article  Google Scholar 

  • Bureau of Fisheries, 2016. China Fisheries Statistics Yearbook. Beijing, China.

    Google Scholar 

  • Chen, J., 2004. Present status and prospects of sea cucumber industry in China. In: FAO (ed),Advances in Sea Cucumber Aquaculture and Management. 25–38.

  • Chen, Q. & Y. Zhu, 2012. Holocene evolution of bottom sediment distribution on the continental shelves of the Bohai Sea, Yellow Sea and East China Sea. Sedimentary Geology 273: 58–72.

    Article  Google Scholar 

  • Conley, K. & S. I. Uye, 2015. Effects of hyposalinity on survival and settlement of moon jellyfish (Aurelia aurita) planulae. Journal of Experimental Marine Biology and Ecology 462: 14–19.

    Article  CAS  Google Scholar 

  • Dong, Z., D. Liu & J. K. Keesing, 2010. Jellyfish blooms in China: dominant species, causes and consequences. Marine Pollution Bulletin 60: 954–963.

    Article  PubMed  CAS  Google Scholar 

  • Dong, Z., D. Liu, Y. Wang, B. Di, X. Song & Y. Shi, 2012. A report on moon jellyfish Aurelia aurita bloom in Sishili bay, northern Yellow Sea of China in 2009. Aquatic Ecosystem Health & Management 15: 161–167.

    Article  Google Scholar 

  • Dong, Z., D. Liu & J. K. Keesing, 2014. Contrasting Trends in Populations of Rhopilema esculentum and Aurelia aurita in Chinese Waters in Jellyfish Blooms. Springer, Netherlands: 207–218.

    Google Scholar 

  • Dong, Z., T. Sun, Q. Liu & Y. Sun, 2017. High density aggregations of the Aurelia sp.1 ephyrae in a Chinese coastal aquaculture pond. Aquatic Ecosystem Health & Management 20: 465–471.

    Google Scholar 

  • Duarte, C. M., K. A. Pitt, C. H. Lucas, J. E. Purcell, S. I. Uye, K. Robinson, L. Brotz, M. B. Decker, K. R. Sutherland, A. Malej, L. Madin, H. Mianzan, J. M. Gili, V. Fuentes, D. Atienza, F. Pagés, D. Breitburg, J. Malek, W. M. Graham & R. H. Condon, 2012. Is global ocean sprawl a cause of jellyfish blooms? Frontiers in Ecology and Evolution 11: 91–97.

    Article  Google Scholar 

  • Feng, S., S. W. Wang, G. T. Zhang, S. Sun & F. Zhang, 2017. Selective suppression of in situ proliferation of scyphozoan polyps by biofouling. Marine Pollution Bulletin 114: 1046–1056.

    Article  PubMed  CAS  Google Scholar 

  • Hamner, W. & M. Dawson, 2009. A review and synthesis on the systematics and evolution of jellyfish blooms: advantageous aggregations and adaptive assemblages. Hydrobiologia 616: 161–191.

    Article  Google Scholar 

  • Han, Q., J. K. Keesing & D. Liu, 2016. A review of sea cucumber aquaculture, ranching, and stock enhancement in China. Reviews in Fisheries Science & Aquaculture 24: 326–341.

    Article  Google Scholar 

  • Holst, S. & G. Jarms, 2007. Substrate choice and settlement preferences of planula larvae of five Scyphozoa (Cnidaria) from German Bight, North Sea. Marine Biology 151: 863–871.

    Article  Google Scholar 

  • Hoover, R. A. & J. E. Purcell, 2009. Substrate preferences of scyphozoan Aurelia labiata polyps among common dock-building materials. Hydrobiologia 616: 259–267.

    Article  CAS  Google Scholar 

  • Hoover, R. A., R. Armour, I. Dow & J. E. Purcell, 2012. Nudibranch predation and dietary preference for the polyps of Aurelia labiata (Cnidaria: Scyphozoa). Hydrobiologia 690: 199–213.

    Article  CAS  Google Scholar 

  • Ishii, H. & K. Katsukoshi, 2010. Seasonal and vertical distribution of Aurelia aurita polyps on a pylon in the innermost part of Tokyo Bay. Journal of Oceanography 66: 329–336.

    Article  Google Scholar 

  • Ishii, H., T. Ohba & T. Kobayashi, 2008. Effects of low dissolved oxygen on planula settlement, polyp growth and asexual reproduction of Aurelia aurita. Plankton and Benthos Research 3(Suppl): 107–113.

    Article  Google Scholar 

  • Lo, W. T., J. E. Purcell, J. J. Hung, H. M. Su & P. K. Hsu, 2008. Enhancement of jellyfish (Aurelia aurita) populations by extensive aquaculture rafts in a coastal lagoon in Taiwan. ICES Journal of Marine Science 65: 453–461.

    Article  Google Scholar 

  • Lorenzen, C. J., 1967. Determination of chlorophyll and pheo-pigments: spectrophotometric equations. Limnology and Oceanography 12: 243.

    Article  Google Scholar 

  • Lucas, C. H., 2001. Reproduction and life history strategies of the common jellyfish, Aurelia aurita, in relation to its ambient environment. Hydrobiologia 451: 229–246.

    Article  Google Scholar 

  • Lucas, C. H., W. M. Graham & C. Widmer, 2012. Jellyfish life histories: role of polyps in forming and maintaining scyphomedusa populations. Advances in Marine Biology 63: 133–196.

    Article  PubMed  Google Scholar 

  • Makabe, R., R. Furukawa, M. Takao & S. Uye, 2014. Marine artificial structures as amplifiers of Aurelia aurita s.l. blooms: a case study of a newly installed floating pier. Journal of Oceanography 70: 447–455.

    Article  CAS  Google Scholar 

  • Malej, A., T. Kogovsek, A. Ramsak & L. Catenacci, 2012. Blooms and population dynamics of moon jellyfish in the northern Adriatic. Cahiers de Biologie Marine 53: 337–342.

    Google Scholar 

  • Marques, R., M. Cantou, S. Soriano, J. C. Molinero & D. Bonnet, 2015. Mapping distribution and habitats of Aurelia sp. polyps in Thau lagoon, north-western Mediterranean Sea (France). Marine Biology 162: 1441–1449.

    Article  Google Scholar 

  • Mitchell, S. O., E. J. Baxter & H. D. Rodger, 2011. Gill pathology in farmed salmon associated with the jellyfish Aurelia aurita. Veterinary Record 169: 609.

    Article  PubMed  CAS  Google Scholar 

  • Miyake, H., M. Terazaki & Y. Kakinuma, 2002. On the polyps of the common jellyfish Aurelia aurita in Kagoshima Bay. Journal of Oceanography 58: 451–459.

    Article  Google Scholar 

  • Purcell, J. E., 2012. Jellyfish and ctenophore blooms coincide with human proliferations and environmental perturbations. Annual Review of Marine Science 4: 209–235.

    Article  PubMed  Google Scholar 

  • Purcell, J. E., R. A. Hoover & N. T. Schwarck, 2009. Interannual variation of strobilation by the scyphozoan Aurelia labiata in relation to polyp density, temperature, salinity, and light conditions in situ. Marine Ecology Progress Series 375: 139–149.

    Article  Google Scholar 

  • Purcell, J. E., E. J. Baxter & V. Fuentes, 2013. Jellyfish as products and problems for aquaculture. In Allan, G. & G. Burnell (eds), Advances in Aquaculture Hatchery Technology. Elsevier, Amsterdam: 404–430.

    Chapter  Google Scholar 

  • Richardson, A. J., A. Bakun, G. C. Hays & M. J. Gibbons, 2009. The jellyfish joyride: causes, consequences and management responses to a more gelatinous future. Trends in Ecology and Evolution 24: 312–322.

    Article  PubMed  Google Scholar 

  • Rodger, H. D., K. Murphy, S. O. Mitchell & L. Henry, 2011. Gill disease in marine farmed Atlantic salmon at four farms in Ireland. Veterinary Record 168: 668.

    Article  PubMed  CAS  Google Scholar 

  • Straehler-Pohl, I. & G. Jarms, 2010. Identification key for young ephyrae: a first step for early detection of jellyfish blooms. Hydrobiologia 645: 3–21.

    Article  Google Scholar 

  • Takao, M., H. Okawachi & S. I. Uye, 2014. Natural predators of polyps of Aurelia aurita sl (Cnidaria: Scyphozoa: Semaeostomeae) and their predation rates. Plankton and Benthos Research 9: 105–113.

    Article  Google Scholar 

  • Toyokawa, M., K. Aoki, S. Yamada, A. Yasuda, Y. Murata & T. Kikuchi, 2011. Distribution of ephyrae and polyps of jellyfish Aurelia aurita (Linnaeus 1758) sensu lato in Mikawa Bay, Japan. Journal of Oceanography 67: 209–218.

    Article  Google Scholar 

  • Uye, S., 2011. Human forcing of the copepod-fish-jellyfish triangular trophic relationship. Hydrobiologia 666: 71–83.

    Article  Google Scholar 

  • Vodopivec, M., A. Peliz & A. Malej, 2017. Offshore marine constructions as propagators of moon jellyfish dispersal. Environmental Research Letters 12: 084003.

    Article  Google Scholar 

  • Wang, Y. & S. Sun, 2015. Population dynamics of Aurelia sp.1 ephyrae and medusa in Jiaozhou Bay, China. Hydrobiologia 754: 147–155.

    Article  CAS  Google Scholar 

  • Wang, Y., D. Liu, Z. Dong, B. Di & X. Shen, 2012. Temporal and spatial distributions of nutrients under the influence of human activities in Sishili Bay, northern Yellow Sea of China. Marine Pollution Bulletin 64: 2708–2719.

    Article  PubMed  CAS  Google Scholar 

  • Watanabe, T. & H. Ishii, 2001. In situ estimation of ephyrae liberated from polyps of Aurelia aurita using settling plates in Tokyo Bay, Japan. Hydrobiologia 451: 247–258.

    Article  Google Scholar 

  • Willcox, S., N. A. Moltschaniwskyj & C. M. Crawford, 2008. Population dynamics of natural colonies of Aurelia sp. scyphistomae in Tasmania, Australia. Marine Biology 154: 661–670.

    Article  Google Scholar 

  • Xu, Q., L. Zhang, T. Zhang, X. Zhang & H. Yang, 2017. Functional groupings and food web of an artificial reef used for sea cucumber aquaculture in northern China. Journal of Sea Research 119: 1–7.

    Article  Google Scholar 

  • Yang, H., J. Hamel & A. Mercier, 2015. The Sea Cucumber Apostichopus japonicus: History, Biology and Aquaculture. Academic Press, New York.

    Google Scholar 

  • Zhang, L., X. Cai, S. Liu, D. Yang & Y. Zhou, 2013. Preliminary study on the annual variation of nutrients in Apostichopus japonicus aquaculture pond. Journal of Hydroecology 34: 37–43. (In Chinese).

    Google Scholar 

Download references

Acknowledgements

This work was supported by Grants from the National Natural Science Foundation of China (No. 41576152), the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDA11020305), and the Science and Technology Service Network Initiative (STS) Project (No. KFJ-STS-ZDTP-023). Z.J.D. gratefully acknowledges the visiting scholarship programme from the China Scholarship Council and host from Dr. Kylie Pitt at Griffith University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhijun Dong.

Additional information

Handling editor: Juan Carlos Molinero

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, Z., Wang, L., Sun, T. et al. Artificial reefs for sea cucumber aquaculture confirmed as settlement substrates of the moon jellyfish Aurelia coerulea. Hydrobiologia 818, 223–234 (2018). https://doi.org/10.1007/s10750-018-3615-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-018-3615-y

Keywords

Profiles

  1. Zhijun Dong