Effects of benthivorous and planktivorous fish on phosphorus cycling, phytoplankton biomass and water transparency of a tropical shallow lake

Abstract

We investigated the roles of a benthivorous (Prochilodus brevis, Steindachner 1875) and a planktivorous (Oreochromis niloticus, Linnaeus, 1758) fish in translocating phosphorus from the benthic to the pelagic habitat of a tropical eutrophic shallow lake and its impact on phytoplankton biomass and water transparency. We performed two field experiments in 20 mesocosms (6 m3) with a 2 × 2 factorial design. Fish presence/absence was manipulated in combination with the presence/absence of a fish cage (4 m3) that prevented fish accessing the sediment. Benthivorous fish increased total phosphorus and chlorophyll a concentrations and decreased water transparency, but only when they had access to the sediment. Planktivorous fish increased the concentration of chlorophyll a without changing total phosphorus concentrations, whether or not they had access to the sediment. Results suggest that only the benthivorous fish increased phytoplankton biomass by translocating phosphorus from benthic to pelagic habitats. However, the planktivorous fish increased phytoplankton biomass by removing zooplankton and recycling nutrients within the pelagic zone. We conclude that removal of either fish species can improve the water quality of eutrophic shallow lakes in tropical regions, but only the removal of benthivorous fish will reduce the internal loading of phosphorus.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Adamek, Z. & B. Marsálek, 2013. Bioturbation of sediments by benthic macroinvertebrates and fish and its implications for pond ecosystems: a review. Aquaculture International 21: 1–17.

    Article  Google Scholar 

  2. Attayde, J. L. & R. F. Menezes, 2008. Effects of fish biomass and planktivore type on plankton communities. Journal of Plankton Research 30: 885–892.

    Article  Google Scholar 

  3. Attayde, J. L., E. H. van Nes, A. I. L. Araujo, G. Corso & M. Scheffer, 2010. Omnivory by planktivores stabilizes plankton dynamics, but may either promote or reduce algal biomass. Ecosystems 13: 410–420.

    Article  Google Scholar 

  4. Bowen, S. H., 1983. Detritivory in neotropical fish communities. Environmental Biology of Fishes 9: 137–144.

    Article  Google Scholar 

  5. Brasil, J., J. L. Attayde, F. R. Vansconcelos, D. D. F. Dantas & V. L. M. Huszar, 2016. Drought-induced water-level reduction favor cyanobacteria blooms in tropical shallow lakes. Hydrobiologia 770: 145–164.

    CAS  Article  Google Scholar 

  6. Breukelaar, A. W., E. H. R. R. Lammens, J. G. P. Klein Breteler & I. Tátrai, 1994. Effects of benthivorous bream (Abramis brama) and carp (Cyprinus carpio) on sediment resuspension and concentrations of nutrients and chlorophyll a. Freshwater Biology 32: 113–121.

    Article  Google Scholar 

  7. Carpenter, S. R. & K. L. Kitchell, 1993. The Trophic Cascade in Lakes. Cambridge University Press, Cambridge.

    Google Scholar 

  8. Cooke, G. D., E. B. Welch, S. A. Peterson & S. A. Nicholas, 2005. Restoration and Management of Lakes and Reservoirs. CRC Press, Boca Raton.

    Google Scholar 

  9. Costa, M. R. A., J. L. Attayde & V. Becker, 2016. Effects of water level reduction on the dynamics of phytoplankton functional groups in tropical semi-arid shallow lakes. Hydrobiologia 778: 75–89.

    Article  Google Scholar 

  10. Croel, R. C. & J. M. Kneitel, 2011. Ecosystem-level effects of bioturbation by the tadpole shrimp Lepidurus packardi in temporal pond mesocosm. Hydrobiologia 665: 169–181.

    Article  Google Scholar 

  11. Fernando, C. H., 1994. Zooplankton, fish and fisheries in tropical freshwaters. Hydrobiologia 272: 105–123.

    Article  Google Scholar 

  12. Figueredo, C. C. & A. Giani, 2005. Ecological interactions between Nile Tilapia (Oreochromis niloticus) and phytoplanktonic community of the Furnas Reservoir (Brazil). Freshwater Biology 50: 1391–1403.

    Article  Google Scholar 

  13. Flecker, A. S., 1996. Ecosystem engineering by a dominant detritivore in a diverse tropical stream. Ecology 77: 1845–1854.

    Article  Google Scholar 

  14. Fulton, R. S., W. F. Godwin & M. H. Schaus, 2015. Water quality changes following nutrient loading reduction and biomanipulation in a large shallow subtropical lake, Lake Griffin, Florida, USA. Hydrobiologia 753: 243–263.

    CAS  Article  Google Scholar 

  15. González-Bergonzoni, I., M. Meerhoff, T. A. Davidson, F. Teixeira-de Melo, A. Baattrup-Pedersen & E. Jeppesen, 2012. Meta-analysis shows a consistent and strong latitude pattern in fish omnivory across ecosystems. Ecosystems 15: 492–503.

    Article  Google Scholar 

  16. Hansson, L. A. H., H. Annadoter, E. Bergman, S. F. Hamrim, E. Jeppesen, T. Kairesalo, E. Luokkanen, P. A. Nilsson, M. Sondergaard & J. Strand, 1998. Biomanipulation as an application of food-chain theory: constraints, synthesis, and recommendations for temperate lakes. Ecosystem 1: 558–574.

    Article  Google Scholar 

  17. Iglesias, C., N. Mazzeo, M. Meerhoff, G. Lacerot, J. M. Clemente, F. Scasso, C. Kruk, G. Goyenola, J. García-Alonso, S. L. Amsinck, J. C. Paggi, S. J. Paggi & E. Jeppesen, 2011. High predation is of key importance for dominance of small-bodied zooplankton in warm shallow lakes: evidence from lakes, fish exclosures, and surface sediment. Hydrobiologia 667: 133–147.

    Article  Google Scholar 

  18. Jeppesen, E., M. Meerhoff, B. A. Jakobsen, R. S. Hansen, M. Søndergaard, J. P. Jensen, T. L. Lauridesen, N. Mazzeo & C. W. C. Branco, 2007. Restoration of shallow lakes by nutrient control and biomanipulatio – the successful strategy varies with lake size and climate. Hydrobiologia 581: 269–285.

    CAS  Article  Google Scholar 

  19. Jeppesen, E., M. Søndergaard, T. L. Lauridsen, T. A. Davidson, L. Zhengwen, N. Mazzeo, C. Trochine, K. Özkan, H. S. Jensen, D. Trolle, F. L. R. M. Starling, X. Lazzaro, L. S. Johansson, R. Bjerring, L. Liboriussen, S. E. Larsen, F. Landkildehus, S. Egemose & M. Meerhoff, 2012. Biomanipulation as a restoration tool to combat eutrophication: recent advances and future challenges. Advances in Ecological Research 47: 411–473.

    Article  Google Scholar 

  20. Jeppesen, E., M. Søndergaard & Z. Liu, 2017. Lake restoration and management in a climate change perspective: an introduction. Water 9: 1–8.

    Article  Google Scholar 

  21. Jespersen, A. M. & K. Christoffersen, 1988. Measurements of chlorophyll α from phytoplankton using ethanol as extraction solvent. Archives of Hydrobiologia 109: 445–454.

    Google Scholar 

  22. Jiménez-Montealegre, R., M. Verdegem, J. E. Zamora & J. A. J. A. J. Verreth, 2002. Organic matter sedimentation and resuspension in tilapia (Oreochromis niloticus) ponds during a production cycle. Aquacultural Engineering 26: 1–12.

    Article  Google Scholar 

  23. Joyni, M. J., B. M. Kurup & Y. Avnimelech, 2011. Bioturbation as a possible means for increase production and improving pond soil characteristic in shrimp-fish brackish water ponds. Aquaculture 318: 464–470.

    Article  Google Scholar 

  24. Kosten, S., V. L. M. Huszar, E. Bécares, L. S. Costa, E. Van Donk, L.-A. Hansson, E. Jeppesen, C. Kruk, G. Lacerot, N. Mazzeo, L. Meester, B. Moss, M. Lürling, T. Nõges, S. Romo & M. Scheffer, 2012. Warmer, climate, boost cyanobacterial dominance in shallow lakes. Global Change Biology 18: 118–126.

    Article  Google Scholar 

  25. Kristensen, E., G. Penha-Lopes, M. Delefosse, T. Valdemarsen, C. O. Qintana & G. T. Banta, 2012. What is bioturbation? The need for a precise definition of for fauna in aquatic sciences. Marine Ecology Progress Series 446: 285–302.

    Article  Google Scholar 

  26. Lacerot, G., 2010. Effects of climate on size structure and functioning of aquatic food webs. PhD thesis, Wageningen University: 98.

  27. Lazzaro, X., 1997. Do the trophic cascade hypothesis and classical biomanipulation approaches apply to tropical lakes reservoirs? Verhandlungen Internationale Vereinigung fuer Theoretische und Angewandte Limnologie 26: 719–730.

    Google Scholar 

  28. Lazzaro, X. & F. Starling, 2005. Using biomanipulation to control eutrophication in a shallow tropical urban reservoir (Lago Paranoá, Brazil). In Reddy, M. V. (ed.), Restoration and Management of Tropical Eutrophic Lakes. Oxford & IBH Publ. Co. Pvt. Ltd., New Delhi and Science Publishers Inc., New Hampshire: 361–387.

  29. Mehner, T., J. Benndorf, P. Kasprzak & R. Koschel, 2002. Biomanipulation of lake ecosystems: successful application and expanding complexity in the underlying science. Freshwater Biology 47: 2453–2465.

    Article  Google Scholar 

  30. Meijer, M.-L., M. W. de Haan, A. W. Breukelaar & H. Buiteveld, 1990. Is reduction of the benthivorous fish an important cause of high transparency following biomanipulation in shallow lakes? Hydrobiologia 200(201): 303–316.

    Article  Google Scholar 

  31. Menezes, R. F., J. L. Attayde & F. R. Vasconcelos, 2010. Effects of omnivorous filter-feeding fish and nutrient enrichment on the plankton community and water transparency in a tropical reservoir. Freshwater Biology 55: 767–779.

    CAS  Article  Google Scholar 

  32. Misson, B., M. Sabart, C. Amblard & D. Latour, 2011. Involvement of microcystins and colony size in benthic recruitment of the cyanobacterium Microcystis (Cyanophyceae). Journal of Phycology 47: 42–51.

    Article  Google Scholar 

  33. Montoya, J. V., D. L. Roelke, K. O. Winemiller, J. B. Cotner & J. A. Snider, 2006. Hydrological seasonality and benthic algal biomass in a Neotropical floodplain river. Journal of the North American Benthological Society 25: 157–170.

    Article  Google Scholar 

  34. Murphy, J. & J. P. Riley, 1962. A modified single-solution method for the determination of phosphate in natural waters. Analytica Chimica Acta 27: 31–36.

    CAS  Article  Google Scholar 

  35. Okun, N., J. Brasil, J. L. Attayde & I. A. S. Costa, 2008. Omnivory does not prevent trophic cascades in pelagic food webs. Freshwater Biology 53: 129–138.

    Google Scholar 

  36. Pearl, H. W. & J. Huisman, 2008. Blooms Like It Hot. Science 320: 57–58.

    Article  Google Scholar 

  37. Rao, W., J. Ning, P. Zhong, E. Jeppesen & Z. Liu, 2015. Size-dependent feeding of omnivorous Nile Tilapia in a macrophyte-dominated lake: implications for lake management. Hydrobiologia 749: 125–134.

    CAS  Article  Google Scholar 

  38. Rondel, C., R. Arfi, D. Corbin, F. Le Bihan, E. H. Ndour & X. Lazzaro, 2008. A cyanobacterial bloom prevents fish trophic cascades. Freshwater Biology 53: 637–651.

    CAS  Article  Google Scholar 

  39. Roozen, F. C. J. M., M. Lurling, H. Vlek, E. A. J. Van der Pouw Kraan, B. W. Ibelings & M. Scheffer, 2007. Resuspension of algal cells by benthivorous fish boosts phytoplankton biomass and alters community structure in shallow lakes. Freshwater Biology 52: 977–987.

    CAS  Article  Google Scholar 

  40. Schaus, M. H. & M. J. Vanni, 2000. Effects of gizzard shad on phytoplankton and nutrient dynamics: role of sediment feeding and fish size. Ecology 81: 1701–1719.

    Article  Google Scholar 

  41. Scheffer, M., 1998. The Ecology of Shallow Lakes. Chapman & Hall, London: 357.

  42. Scheffer, M., R. Portielje & L. Zambrano, 2003. Fish facilitate wave resuspension of sediment. Limnology and Oceanography 48: 1920–1926.

    Article  Google Scholar 

  43. Søndergaard, M., L. Liboriussen, A. R. Pedersen & E. Jeppesen, 2008. Lake restoration by fish removal: long-term effects in 36 Danish lakes. Ecosystems 1: 1291–1305.

    Article  Google Scholar 

  44. Starling, F., M. Beveridge, X. Lazzaro & D. Baird, 1998. Silver carp biomass effects on the plankton community in Paranoa reservoir (Brazil) and an assessment of its potential for improving water quality in lacustrine environments. International Review of Hydrobiology 83: 499–507.

    Google Scholar 

  45. Starling, F., X. Lazzaro, C. Cavalcanti & R. Moreira, 2002. Contribution of omnivorous tilapia to eutrophication of a shallow tropical reservoir: evidence from a fish kill. Freshwater Biology 47: 2443–2452.

    Article  Google Scholar 

  46. Taylor, B., A. Flecker & R. Hall, 2006. Loss of a harvested fish species disrupts carbon flow in a diverse tropical river. Science 313: 833–836.

    CAS  Article  Google Scholar 

  47. Valderrama, J. C., 1981. The simultaneous analysis of total N and P in natural waters. Marine Chemical 10: 109–122.

    CAS  Article  Google Scholar 

  48. Vanni, M. J., 2002. Nutrient cycling by animals in freshwater ecosystems. Annual Revision of Ecology and Systematic 33: 341–370.

    Article  Google Scholar 

  49. Yu, J., Z. Liu, K. Li, F. Chen, B. Guan, Y. Hu, P. Zhong, Y. Tang, X. Zhao, H. He, H. Zeng & E. Jeppesen, 2016. Restoration of shallow lakes in subtropical and tropical China: response of nutrients and water clarity to biomanipulation by fish removal and submerged plant transplantation. Water 8: 1–13.

    Article  Google Scholar 

  50. Zambrano, L. & D. Hinojosa, 1999. Direct and indirect effects of carp (Cyprinus carpio L.) on macrophyte and benthic communities in experimental shallow ponds in central Mexico. Hydrobiologia 408(409): 131–138.

    Article  Google Scholar 

  51. Zambrano, L., M. Scheffer & M. Martínez-Ramos, 2001. Catastrophic response of lakes to benthivorous fish introduction. Oikos 94: 344–350.

    Article  Google Scholar 

  52. Zhang, X., P. Xie & X. Huang, 2008. A review of nontraditional biomanipulation. The Scientific World Journal 8: 1184–1196.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Vanessa Becker and Andre Amado for their logistic support to the laboratory analyses. The authors greatly appreciate all insights and contributions from the two anonymous reviewers. They also thank the Brazilian Science Foundation (CNPq – www.cnpq.gov.br) for their financial support to JLA (CNPq/ICMBio number 13/2011) and the Coordination for the Improvement of Higher Education Personnel (CAPES-www.capes.gov.br) for the Ph.D. grants given to DDFD and PLR.

Author information

Affiliations

Authors

Corresponding author

Correspondence to José L. Attayde.

Additional information

Guest editors: S. Nandini, S.S.S. Sarma, Erik Jeppesen & Linda May / Shallow Lakes Research: Advances and Perspectives

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dantas, D.D.F., Rubim, P.L., de Oliveira, F.A. et al. Effects of benthivorous and planktivorous fish on phosphorus cycling, phytoplankton biomass and water transparency of a tropical shallow lake. Hydrobiologia 829, 31–41 (2019). https://doi.org/10.1007/s10750-018-3613-0

Download citation

Keywords

  • Habitat coupling
  • Bioturbation
  • Nutrient transport
  • Water quality
  • Biomanipulation