Skip to main content

Advertisement

Log in

The role of mobile consumers in lake nutrient cycles: a brief review

  • Review Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

We summarise current understanding of consumer recycling in lake nutrient cycles and expand on it by integrating emerging knowledge from food web ecology. The role of consumer nutrient recycling (CNR) is initially framed in the wider context of lake nutrient cycling, which includes hydrodynamic and biogeochemical processes, and their responses to global environmental change. Case studies are used to demonstrate that effects of CNR on lake ecosystems range widely, from reduced nutrient cycling rates to exacerbation of eutrophication. CNR depends on consumer biomass, body size and diet, remaining relatively consistent through the year and becoming important as other fluxes seasonally ebb. Universal patterns in food web structure, for example, consumer–resource biomass ratios, body size scaling and relationships between trophic level and diet breadth, are used to demonstrate the predictability of CNR effects. Larger, mobile, top predators excrete nutrients at a lower rate but over a wider range, linking nutrient cycles across habitats. Smaller-bodied, lower trophic level consumers have strong localised nutrient cycling effects associated with their limited mobility. Global environmental-change drivers that alter food web structure are likely to have the greatest impact on CNR rates and should direct future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adrian, R., C. M. O’Reilly, H. Zagarese, S. B. Baines, D. O. Hessen, W. B. Keller, D. M. Livingstone, R. Sommaruga, D. Straile, E. van Donk, G. A. Weyhenmeyer & M. Winder, 2010. Lakes as sentinels of climate change. Limnology & Oceanography 54: 2283–2297.

    Article  Google Scholar 

  • Allgeier, J. E., D. E. Burkepile & C. A. Layman, 2017. Animal pee in the sea: consumer-mediated nutrient dynamics in the world’s changing oceans. Global Change Biology. https://doi.org/10.1111/gcb.13625.

    Article  PubMed  Google Scholar 

  • Amado, A. M., F. Meirelles-Pereira, L. O. Vidal, H. Sarmento, A. L. Suhett, V. F. Farjalla, J. B. Cotner & F. Roland, 2013. Tropical freshwater ecosystems have lower bacterial growth efficiency than temperate ones. Frontiers in Microbiology 4: 167.

    Article  PubMed  PubMed Central  Google Scholar 

  • Angeler, D. G. & C. R. Allen, 2016. Quantifying resilience. Journal of Applied Ecology 53: 617–624.

    Article  Google Scholar 

  • Antenucci, J. P. & J. Imberger, 2001. Energetics of long internal gravity waves in large lakes. Limnology and Oceanography 46: 1760–1773.

    Article  Google Scholar 

  • Attayde, J. L. & L.-A. Hansson, 2001. Fish-mediated nutrient recycling and the trophic cascade in lakes. Canadian Journal of Fisheries and Aquatic Sciences 58: 1924–1931.

    Article  Google Scholar 

  • Barraquand, F., S. Louca, K. C. Abbott, C. A. Cobbold, D. L. DeAngelis, B. D. Elderd, J. W. Fox, P. Greenwood, F. Hilker, D. L. Murry, C. R. Stieha, R. A. Taylor, K. Vitense, G. S. K. Wolkiwicz & R. C. Tyson, 2017. Moving forward in circles: challenges and opportunities in modelling population cycles. Ecology Letters. https://doi.org/10.1111/ele.12789.

    Article  PubMed  Google Scholar 

  • Barnes, C., D. Maxwell, D. C. Reuman & S. Jennings, 2010. Global patterns in predator–prey size relationships reveal size dependency of trophic transfer efficiency. Ecology 91: 222–232.

    Article  PubMed  Google Scholar 

  • Bartrons, M., L. Camarero & J. Catalan, 2010. Isotopic composition of dissolved inorganic nitrogen in high mountain lakes: variation with altitude in the Pyrenees. Biogeosciences 7: 1469–1479.

    Article  CAS  Google Scholar 

  • Baustian, M. M., G. J. A. Hansen, A. de Kluijver, K. Robinson, E. N. Henry, L. B. Knoll, K. C. Rose, & C. C. Carey, 2014. Linking the bottom to the top in aquatic ecosystems: mechanisms and stressors of benthic-pelagic coupling. Eco-DAS X Symposium Proceedings 2014: 25–47.

  • Beisner, B. E., 2001. Plankton community structure in fluctuating environments and the role of productivity. Oikos 95: 496–510.

    Article  Google Scholar 

  • Beisner, B. E., P. R. Peres-Neto, E. S. Lindstrom, A. Barnett & M. L. Longhi, 2006. The role of environmental and spatial processes in structuring lake communities from bacteria to fish. Ecology 87: 2985–2991.

    Article  PubMed  Google Scholar 

  • Biddanda, B., M. Ogdahl & J. Cotner, 2001. Dominance of bacterial metabolism in oligotrophic relative to eutrophic waters. Limnology and Oceanography. https://doi.org/10.4319/lo.2001.46.3.0730.

    Article  Google Scholar 

  • Blanchard, J. L., R. Law, M. D. Castle & S. Jennings, 2010. Coupled energy pathways and the resilience of size-structured food webs. Theoretical Ecology 4: 289–300.

    Article  Google Scholar 

  • Bocaniov, S. A., C. Ullmann, K. Rinke, K. G. Lamb & B. Boehrer, 2014. Internal waves and mixing in a stratified reservoir: insights from three-dimensional modeling. Limnologica 49: 52–67.

    Article  Google Scholar 

  • Boehrer, B. & M. Schultze, 2008. Stratification Lakes. Reviews of Geophysics 46: 1–27.

    Article  CAS  Google Scholar 

  • Brose, U., T. Jonsson, E. L. Berlow, P. H. Warren, C. Banasek-Richter, L.-F. Bersier, J. L. Blanchard, T. Brey, S. R. Carpenter, M.-F. Cattin Blandenier, L. Cushing, H. A. Dawah, A. I. Dell, F. Edwards, S. Harper-Smith, U. Jacob, M. E. Ledger, N. D. Martinez, J. Memmott, K. Mintenbeck, J. K. Pinnegar, B. C. Rall, T. S. Rayner, D. C. Reuman, L. Ruess, W. Ulrich, R. J. Williams, G. Woodward & J. E. Cohen, 2006. Consumer-resource body-size relationships in natural food webs. Ecology 87: 2411–2417.

    Article  PubMed  Google Scholar 

  • Brown, J. H., J. F. Gillooly, A. P. Allen, V. M. Savage & G. B. West, 2004. Toward a metabolic theory of ecology. Ecology 85: 1771–1789.

    Article  Google Scholar 

  • Carey, C. C., B. W. Ibelings, E. P. Hoffmann, D. P. Hamilton & J. D. Brookes, 2012. Eco-physiological adaptations that favour freshwater cyanobacteria in a changing climate. Water Research 46: 1394–1407.

    Article  PubMed  CAS  Google Scholar 

  • Carpenter, S. R., 2003. Regime Shifts in Lake Ecosystems: Pattern and Variation. Excellence in Ecology, Vol. 15. International Ecology Institute, Oldendorf/Luhe.

  • Carpenter, S. R., J. R. Kitchell, J. R. Hodgson, P. A. Cochran, J. J. Elser, M. M. Elser, D. M. Lodge, D. Kretchmer & X. He, 1987. Regulation of lake primary productivity by food web structure. Ecology 68: 1863–1876.

    Article  PubMed  CAS  Google Scholar 

  • Carpenter, S. R., K. L. Cottingham & D. E. Schindler, 1992. Biotic feedbacks in lake phosphorus cycles. Trends in Ecology & Evolution 7: 332–336.

    Article  CAS  Google Scholar 

  • Carpenter, S. R., E. H. Stanley & M. J. Vander Zanden, 2011. State of the world’s freshwater ecosystems: physical, chemical, and biological changes. Annual Review of Environment and Resources 36: 75–99.

    Article  Google Scholar 

  • Casini, M., J. Hjelm, J.-C. Molinero, J. Lövgren, M. Cardinale, V. Bartolino, A. Belgrano & G. Kornilovs, 2009. Trophic cascades promote threshold-like shifts. PNAS 106: 197–202.

    Article  PubMed  Google Scholar 

  • Cebrian, J., 2015. Energy flows in ecosystems. Science 349: 1053–1054.

    Article  PubMed  CAS  Google Scholar 

  • Chikaraishi, Y., N. O. Ogawa, Y. Kashiyama, Y. Takano, H. Suga, A. Tomitani, H. Miyashita, H. Kitazato & N. Ohkouchi, 2009. Determination of aquatic food-web structure based on compound-specific nitrogen isotopic composition of amino acids. Limnology and Oceanography: Methods 7: 740–750.

    CAS  Google Scholar 

  • Cohen, J. E., T. Jonsson & S. R. Carpenter, 2003. Ecological community description using the food web, species abundance, and body size. Proceedings of the National Academy of Sciences 100: 1781–1786.

    Article  CAS  Google Scholar 

  • Conroy, J. D., W. J. Edwards, R. A. Pontius, D. D. Kane, H. Zhang, J. F. Shea, J. N. Richey & C. A. Culver, 2005. Soluble nitrogen and phosphorus excretion of exotic freshwater mussels (Dreissena spp.): potential impacts for nutrient remineralisation in western Lake Erie. Freshwater Biology 50: 1146–1162.

    Article  CAS  Google Scholar 

  • Corman, J. R., P. B. McIntyre, B. Kuboja, W. Mbemba, D. Fink, C. W. Wheeler, C. Gans, E. Michel & A. S. Flecker, 2010. Upwelling couples chemical and biological dynamics across the littoral and pelagic zones of Lake Tanganyika, East Africa. Limnology and Oceanography 55: 214–224.

    Article  CAS  Google Scholar 

  • Cotner, J. B. & B. A. Biddanda, 2002. Small players, large role: microbial influence on biogeochemical processes in pelagic aquatic ecosystems. Ecosystems 5: 105–121.

    Article  CAS  Google Scholar 

  • DeLong, J. P., B. Gilbert, J. B. Shurin, V. M. Savage, B. T. Barton, C. F. Clements, A. I. Dell, H. S. Greig, C. D. G. Harley, P. Kratina, K. S. McCann, T. D. Tunney, D. A. Vasseur & M. I. O’Connor, 2015. The body size dependence of trophic cascades. The American Naturalist 185: 354–366.

    Article  PubMed  Google Scholar 

  • Dong, X., A. Ruhí & N. B. Grimm, 2017. Evidence for self-organization in determining spatial patterns of stream nutrients, despite primacy of the geomorphic template. Proceedings of the National Academy of Sciences: https://doi.org/10.1073/pnas.1617571114.

    Article  PubMed Central  Google Scholar 

  • Elser, J. J., W. F. Fagan, R. F. Denno, D. R. Dobberfuhl, A. Folarin, A. Huberty, S. Interlandi, S. S. Kilham, E. McCauley, K. L. Schulz, E. H. Siemann & R. W. Sterner, 2000. Nutritional constraints in terrestrial and freshwater food webs. Nature 408: 578–580.

    Article  PubMed  CAS  Google Scholar 

  • Elser, J. J., K. Acharya, M. Kyle, J. Cotner, W. Makino, T. Markow, T. Watts, S. Hobbie, W. Fagan, J. Schade, J. Hood & R. W. Sterner, 2003. Growth rate-stoichiometry couplings in diverse biota. Ecology Letters 6: 936–943.

    Article  Google Scholar 

  • Estes, J. A., J. Terborgh, J. S. Brashares, M. E. Power, J. Berger, W. J. Bond, S. R. Carpenter, T. E. Essington, R. D. Holt, J. B. C. Jackson, R. J. Marquis, L. Oksanen, T. Oksanen, R. T. Paine, E. K. Pikitch, W. J. Ripple, S. A. Sandin, M. Scheffer, T. W. Schoener, J. B. Shurin, A. R. E. Sinclair, M. E. Soulé, R. Virtanen & D. A. Wardle, 2011. Trophic downgrading of planet Earth. Science 333: 301–306.

    Article  PubMed  CAS  Google Scholar 

  • Farnsworth, K. D., L. Albantakis & T. Caruso, 2017. Unifying concepts of biological function from molecules to ecosystems. Oikos 126: 1367–1376.

    Article  Google Scholar 

  • Fenchel, T., 2008. The microbial loop – 25 years later. Journal of Experimental Marine Biology and Ecology 366: 99–103.

    Article  Google Scholar 

  • Forbes, S. A. 1887. The lake as a microcosm. Bull. of the Scientific Association (Peoria, IL): 77–87.

  • Fussmann, G. F., 2008. The lake as a system of differential equations - a paradigm for the aquatic ecologist of the 21st century? International Review of Hydrobiology 93: 532–540.

    Article  Google Scholar 

  • Garzke, J., S. H. Ishmar & U. Sommer, 2015. Climate change affects low trophic level marine consumers: warming decreases copepod size and abundance. Oikos 177: 849–860.

    Google Scholar 

  • Hall, R. O., B. J. Koch, M. C. Marshall, B. W. Taylor & L. M. Tronstad, 2007. How body size mediates the role of animals in nutrient clcying in aquatic ecosystems. In Hildrew, A., D. Raffaelli & R. Edmonds-Brown (eds), Body size: the structure and function of aquatic ecosystems. Cambridge University Press, Cambridge: 286–305.

    Chapter  Google Scholar 

  • Hamilton, D. P., N. Salmaso & H. W. Paerl, 2016. Mitigating harmful cyanobacterial blooms: strategies for control of nitrogen and phosphorus loads. Aquatic Ecology 2016: 50. https://doi.org/10.1007/s10452-016-9594-z.

    Article  CAS  Google Scholar 

  • Hatton, I. A., K. S. McCann, J. M. Fryxell, T. J. Davies, M. Smerlak, A. R. E. Sinclair & M. Loreau, 2015. The predator-prey power law: biomass scaling across terrestrial and aquatic biomes. Science 349: aac6284.

    Article  PubMed  CAS  Google Scholar 

  • He, X., J. F. Kitchell, S. R. Carpenter, J. R. Hodgson, D. E. Schindler & K. L. Cottingham, 1993. Food web structure and long-term phosphorus recycling: a simulation model evaluation. Transactions of the American Fisheries Society 122: 773–783.

    Article  CAS  Google Scholar 

  • Hellweger, F. L., 2017. 75 years since Monod: it is time to increase the complexity of our predictive ecosystem models (opinion). Ecological Modelling 346: 77–87.

    Article  Google Scholar 

  • Higgins, S. N., B. Althouse, S. P. Devlin, Y. Vadeboncoeur & M. J. Vander Zanden, 2014. Potential for large-bodied zooplankton and dreissenids to alter the productivity and autotrophic structure of lakes. Ecology 95: 2257–2267.

    Article  PubMed  Google Scholar 

  • Horne, C. R., A. G. Hirst & D. Atkinson, 2015. Temperature-size responses match latitudinal-size clines in arthropods, revealing critical differences between aquatic and terrestrial species. Ecology letters 18: 327–335.

    Article  PubMed  Google Scholar 

  • Houlihan, D. F., 1991. Protein turnover in ectotherms and its relationships to energetics advances in comparative and environmental physiology. Springer, Berlin: 1–43.

    Google Scholar 

  • Imberger, J. & J. C. Patterson, 1990. Physical limnology. Advances in applied mechanics 27: 303–475.

    Article  Google Scholar 

  • Ings, N. L., J. Grey, L. King, S. McGowan & A. G. Hildrew, 2017. Modification of littoral algal assemblages by gardening caddisfly larvae. Freshwater Biology 62: 507–518.

    Article  CAS  Google Scholar 

  • Jennings, S. & J. L. Blanchard, 2004. Fish abundance with no fishing: predictions based on macroecological theory. Journal of Animal Ecology 73: 632–642.

    Article  Google Scholar 

  • Jenny, J.-P., P. Francus, A. Normandeau, F. Lapointe, M.-E. Perga, A. E. K. Ojala, A. Schimmelmann & B. Zolitschka, 2015. Global spread of hypoxia in freshwater ecosystems during the last three centuries is caused by rising local human pressure. Global Change Biology 22: 1481–1489.

    Article  Google Scholar 

  • Jenny, J., A. Normandeau, P. Francus, Z. E. Taranu, I. Gregory-Eaves, F. Lapointe, J. Jautzy, A. E. K. Ojala, J.-M. Dorioz, A. Schimmelmann & B. Zolitschka, 2016. Urban point sources of nutrients were the leading cause for the historical spread of hypoxia across European lakes. Proceedings of the National Academy of Sciences 113: 12655–12660.

    Article  CAS  Google Scholar 

  • Kilham, P. & S. Kilham, 1990. Endless summer: internal loading processes dominate nutrient cycling in tropical lakes. Freshwater Biology 23: 379–389.

    Article  Google Scholar 

  • Klompmaker, A., M. Kowalewski, J. W. Huntley & S. Finnegan, 2017. Increase in predator-prey size ratios throughout the Phanerozoic history of marine ecosystems. Science 356: 1178–1180.

    Article  PubMed  CAS  Google Scholar 

  • Kraemer B. M., O. Anneville, S. Chandra, M. Dix, E. Kuusisto, D. M. Livingstone, et al. 2015. Morphometry and average temperature affect lake stratification responses to climate change. Geophysical Research Letters 10: 4981–4988.

    Article  Google Scholar 

  • Krause, A. E., K. A. Frank, D. M. Mason, R. E. Ulanowicz & W. W. Taylor, 2003. Compartments revealed in food-web structure. Nature 426: 282–286.

    Article  PubMed  CAS  Google Scholar 

  • Kumar, S., R. W. Sterner & J. C. Finlay, 2008. Nitrogen and carbon uptake dynamics in Lake Superior. Journal of Geophysical Research 113: 1–15.

    Google Scholar 

  • Lagus, A., J. Suomela, H. Helminen, J. Lehtimäki, J. Sipura, K. Sivonen & L. Suominen, 2007. Interaction effects of N: P ratios and frequency of nutrient supply on the plankton community in the northern Baltic Sea. Marine Ecology Progress Series 332: 77–92.

    Article  CAS  Google Scholar 

  • Lang, B., R. B. Ehnes, U. Brose & B. C. Rall, 2017. Temperature and consumer type dependencies of energy flows in natural communities. Oikos. https://doi.org/10.1111/oik.04419.

    Article  Google Scholar 

  • Lavrentyev, P. J., W. S. Gardner & J. R. Johnson, 1997. Cascading trophic effects on aquatic nitrification - experimental-evidence and potential implications. Aquatic Microbial Ecology 13: 161–175.

    Article  Google Scholar 

  • Layman, C. A., S. T. Giery, S. Buhler, R. Rossi, T. Penland, M. N. Henson, A. K. Bogdanoff, M. V. Cove, A. D. Irizarry, C. M. Schalk & S. K. Archer, 2015. A primer on the history of food web ecology: fundamental contributions of fourteen researchers. Food Webs 4: 14–24.

    Article  Google Scholar 

  • Lehmann, M. F., M. Simona, S. Wyss, J. Blees, C. H. Frame, H. Niemann, M. Veronesi & J. Zopfi, 2015. Powering up the “biogeochemical engine”: the impact of exceptional ventilation of a deep meromictic lake on the lacustrine redox, nutrient, and methane balances. Frontiers in Earth Science 3: 1–13.

    Article  Google Scholar 

  • Levin, S. A., 1999. Fragile dominion: complexity and the commons. Perseus Books, Reading.

    Google Scholar 

  • Levin, S. A., 2005. Self-organization and the Emergence of Complexity in Ecological Systems. BioScience 55: 1075–1079. https://doi.org/10.1641/0006-3568(2005)055[1075:SATEOC]2.0.CO;2.

    Article  Google Scholar 

  • Lewis, W. M. J., 1996. Tropical lakes: how latitude makes a difference. In Schiemer, F. & K. Boland (eds), Perspectives in Tropical Limnology. SPB Academic Publishing, Amsterdam: 43–64.

    Google Scholar 

  • Lewis, W. J., 2010. Biogeochemistry of tropical lakes. Verh Int Verein Limnol 30: 1595–1603.

    CAS  Google Scholar 

  • Li, W. & M. H. H. Stevens, 2010. How enrichment, ecosystem size, and their effects on species richness co-determine the stability of microcosm communities. Oikos 119: 686–695.

    Article  Google Scholar 

  • Ludsin, S. A., M. W. Kershner, K. A. Blocksom, R. L. Knight & R. A. Stein, 2001. Life after death in Lake Erie: nutrient controls drive fish soecies richness, rehabilitation. Ecological Applications 11: 731–746.

    Article  Google Scholar 

  • Macintyre, S., J. F. Clark, R. Jellison & J. P. Fram, 2009. Turbulent mixing induced by nonlinear internal waves in Mono Lake, California. Limnology & Oceanography 54: 2255–2272.

    Article  Google Scholar 

  • McCann, K. S., A. Hastings & G. R. Huxel, 1998. Weak trophic interactions and the balance of nature. Nature 395: 794–798.

    Article  CAS  Google Scholar 

  • McCann, K. S., J. B. Rasmussen & J. Umbanhowar, 2005. The dynamics of spatially coupled food webs. Ecology letters 8: 513–523.

    Article  PubMed  CAS  Google Scholar 

  • McCarthy, V. & K. Irvine, 2010. A test of stoichiometry across six Irish lakes of low-moderate nutrient status and contrasting hardness. Journal of Plankton Research 32: 15–29. https://doi.org/10.1093/plankt/fbp103

    Article  CAS  Google Scholar 

  • McIntyre, P. B., A. S. Flecker, M. J. Vanni, J. M. Hood, B. W. Taylor & S. A. Thomas, 2008. Fish distributions and nutrient cycling in streams: can fish create biogeochemical hotspots? Ecology 89: 2335–2346.

    Article  PubMed  Google Scholar 

  • McMeans, B. C., K. S. McCann, M. Humphries, N. Rooney & A. T. Fisk, 2015. Food web structure in temporally-forced ecosystems. Trends in Ecology and Evolution 30: 662–672.

    Article  PubMed  Google Scholar 

  • McMeans, B. C., K. S. McCann, T. D. Tunney, A. T. Fisk, A. M. Muir, N. P. Lester, B. J. Shuter & N. Rooney, 2016. The adaptive capacity of lake food webs: from individuals to ecosystems. Ecological Monographs 86: 4–19.

    Article  Google Scholar 

  • Middelburg, J. J., 2014. Stable isotopes dissect aquatic food webs from the top to the bottom. Biogeosciences 11: 2357–2371. https://doi.org/10.5194/bg-11-2357-2014.

    Article  Google Scholar 

  • Minagawa, M. & E. Wada, 1984. Stepwise enrichment of 15N along food chains: further evidence and the relation between δ15N and animal age. Geochimica et Cosmochimica Acta 48: 1135–1140.

    Article  CAS  Google Scholar 

  • Monismith, S. G., J. Imberger & M. L. Morison, 1990. Convective motions in the sidearm of a small reservoir. Source. Limnology and Oceanography 35: 1676–1702.

    Article  Google Scholar 

  • Moss, B., 2012. Cogs in the endless machine: lakes, climate change and nutrient cycles: a review. The Science of the Total Environment 434: 130–142.

    Article  PubMed  CAS  Google Scholar 

  • Neutel, A. M., J. A. P. Heesterbeek, J. van de Koppel, G. Hoenderboom, A. Vos, C. Kaldeway, F. Berendse & P. C. de Ruiter, 2007. Reconciling complexity with stability in naturally assembling food webs. Nature 449: 599–602.

    Article  PubMed  CAS  Google Scholar 

  • OECD, 1982. Eutrophication of waters—monitoring, assessment and control. Organisation for Economic Co-operation and Development, Paris: 154.

    Google Scholar 

  • O’Neil, J. M., T. W. Davis, M. A. Burford & C. J. Gobler, 2012. The rise of harmful cyanobacteria blooms: the potential roles of eutrophication and climate change. Harmful Algae 14: 313–334.

    Article  CAS  Google Scholar 

  • O’Reilly, C. M., S. R. Alin, P.-D. D. Plisnier, A. S. Cohen & B. A. McKee, 2003. Climate change decreases aquatic ecosystem productivity of Lake Tanganyika, Africa. Nature 424: 766–768.

    Article  PubMed  CAS  Google Scholar 

  • O’Reilly, C. M., R. J. Rowley, P. Schneider, J. D. Lenters, P. B. Mcintyre, B. M. Kraemer, et al., 2015. Rapid and highly variable warming of lake surface waters around the globe. Geophysical Research Letters 42: 10773–10781.

    Article  Google Scholar 

  • Oliver, R. L., D. P. Hamilton, J. D. Brookes & G. G. Ganf, 2012. Introduction to the cyanobacteria. In Whitton, B. A. (ed.), Ecology of Cyanobacteria. Springer, Dordrecht: 155–189.

    Chapter  Google Scholar 

  • Paerl, H. W. & J. Huisman, 2008. Blooms Like It Hot. Science 320: 57–58.

    Article  PubMed  CAS  Google Scholar 

  • Paerl, H. W. & J. L. Pinckney, 1996. A Mini-review of microbial consortia: their roles in aquatic production and biogeochemical cycling. Microbial Ecology 31: 225–247.

    Article  PubMed  CAS  Google Scholar 

  • Petchey, O. L., A. P. Beckerman, J. O. Riede & P. H. Warren, 2008. Size, foraging, and food web structure. Proceedings of the National Academy of Sciences of the United States of America 105: 4191–4196.

    Article  PubMed  PubMed Central  Google Scholar 

  • Polis, G. A., W. B. Anderson & R. D. Holt, 1997. Toward an integration of landscape and food web ecology: the dynamics of spatially subsidized food webs. Annual Review of Ecology and Systematics 28: 289–316.

    Article  Google Scholar 

  • Pöschke, F., J. Lewandowski, C. Engelhardt, K. Preuß, M. Oczipka, T. Ruhtz & G. Kirillin, 2015. Upwelling of deep water during thermal stratification onset - A major mechanism of vertical transport in small temperate lakes in spring? Water Resources Research 51: 9612–9627.

    Article  Google Scholar 

  • Post, D. M., M. E. Conners & D. S. Goldberg, 2000. Prey preference by a top predator and the stability of linked food chains. Ecology 81: 8–14.

    Article  Google Scholar 

  • Proulx, S. R., D. E. L. Promislow & P. C. Phillips, 2005. Network thinking in ecology and evolution. Trends in Ecology & Evolution 20: 345–353.

    Article  Google Scholar 

  • Ptacnik, R., S. D. Moorthi & H. Hillebrand, 2010. Hutchinson reversed, or why there need to be so many species. In Woodward, G. (ed.), Advances in ecological research. Academic Press, Burlington: 1–43.

    Google Scholar 

  • Ptacnik, R., A. Gomes, S. J. Royer, T. M. Tsagaraki, A. F. Sazhin, S. A. Berger, A. Calbet, J. C. Nejstgaard, S. Isari, S. D. Moorthi, R. Ptacnikova, M. Striebel, S. Zervoudaki, K. Altoja, P. Dimitriou, P. Laas, A. Gazihan-Akoglu, R. A. Martínez, S. Schabhuttl, I. Santi, D. Sousoni, J. M. Gasol & P. Pitta, 2014. A light-induced shortcut in the planktonic microbial loop. Scientific Reports 6: 29286.

    Article  Google Scholar 

  • Robinson, D., 2001. 15N as an integrator of the nitrogen cycle. Trends in Ecology & Evolution 16: 153–162.

    Article  CAS  Google Scholar 

  • Rockström, J., W. Steffen, K. Noone, Å. Persson, F. S. Chapin, E. Lambin, T. M. Lenton, M. Scheffer, C. Folke, H. J. Schellnhuber, B. Nykvist, C. A. de Wit, T. Hughes, S. van der Leeuw, H. Rodhe, S. Sörlin, R. Costanza, U. Svedin, M. Falkenmark, L. Karlberg, R. W. Corell, V. J. Fabry, J. Hansen, B. Walker, D. Liverman, K. Richardson, P. Crutzen & J. Foley, 2009. Planetary boundaries: exploring the safe operating space for humanity. Ecology and Society 14: 472–475.

    Article  Google Scholar 

  • Rolls, R. J., B. Hayden & K. K. Kahilainen, 2017. Conceptualising the interactive effects of climate change and biological invasions on subarctic freshwater fish. Ecology and Evolution. https://doi.org/10.1002/ece3.2982.

    Article  PubMed  PubMed Central  Google Scholar 

  • Romanuk, T. N., A. Hayward & J. A. Hutchings, 2011. Trophic level scales positively with body size in fishes. Global Ecology and Biogeography 20: 231–240.

    Article  Google Scholar 

  • Rooney, N. & K. S. McCann, 2012. Integrating food web diversity, structure and stability. Trends in Ecology & Evolution 27: 40–46.

    Article  Google Scholar 

  • Rooney, N., K. McCann, G. Gellner & J. C. Moore, 2006. Structural asymmetry and the stability of diverse food webs. Nature 442: 265–269.

    Article  PubMed  CAS  Google Scholar 

  • Sahoo, G. B., A. L. Forrest, S. G. Schladow, J. E. Reuter, R. Coats & M. Dettinger, 2016. Climate change impacts on lake thermal dynamics and ecosystem vulnerabilities. Limnology and Oceanography 61: 496–507.

    Article  Google Scholar 

  • Scheffer, M. & S. R. Carpenter, 2003. Catastrophic regime shifts in ecosystems: linking theory to observation. Trends in Ecology and Evolution 18: 648–656.

    Article  Google Scholar 

  • Scheffer, M., S. Carpenter, J. A. Foley, C. Folke & B. Walker. 2001. Catastrophic shifts in ecosystems. Nature 413: 591–596.

    Article  PubMed  CAS  Google Scholar 

  • Schindler, D. E., J. F. Kitchell, X. He, S. R. Carpenter, J. R. Hodgson & K. L. Cottingham, 1993. Food web structure and phosphorus cycling in lakes. Transactions of the American Fisheries Society 122: 756–772.

    Article  CAS  Google Scholar 

  • Schindler, D. E. & M. D. Scheuerell, 2002. Habitat coupling in lake ecosystems. Oikos 98: 177–189.

    Article  Google Scholar 

  • Sentis, A., A. Binzer & D. S. Boukal, 2017. Temperature-size responses alter food chain persistence across environmental gradients. Ecology letters: https://doi.org/10.1111/ele.12779.

    Article  Google Scholar 

  • Sereda, J. M., J. J. Hudson, W. D. Taylor & E. Demers, 2008. Fish as sources and sinks of nutrients in lakes. Freshwater Biology 53: 278–289.

    CAS  Google Scholar 

  • Shostell, J. & P. A. Bukaveckas, 2004. Seasonal and interannual variation in nutrient fluxes from tributary inputs, consumer recycling and algal growth in a eutrophic river impoundment. Aquatic Ecology 38: 359–373.

    Article  CAS  Google Scholar 

  • Smith, V. H. & D. W. Schindler, 2009. Eutrophication science: where do we go from here? Trends in Ecology and Evolution 24: 201–207.

    Article  PubMed  Google Scholar 

  • Somes, C. J., A. Schmittner, E. D. Galbraith, M. F. Lehmann, M. A. Altabet, J. P. Montoya, R. M. Letelier, A. C. Mix, A. Bourbonnais & M. Eby, 2010. Simulating the global distribution of nitrogen isotopes in the ocean. Global Biogeochemical Cycles 24: 1–16.

    Article  CAS  Google Scholar 

  • Sommer, U., R. Adrian, L. De Senerpont Domis, J. J. Elser, U. Gaedke, B. Ibelings, E. Jeppesen, M. Lürling, J. C. Molinero, W. M. Mooij, E. van Donk & M. Winder, 2012. Beyond the Plankton Ecology Group (PEG) model: mechanisms driving plankton succession. Annual Review of Ecology, Evolution, and Systematics 43: 429–448.

    Article  Google Scholar 

  • Søndergaard, M., E. Jeppesen, T. L. Lauridsen, C. Skov, E. H. Van Nes, R. Roijackers, E. Lammens & R. Portielje, 2007. Lake restoration: successes, failures and long-term effects. Journal of Applied Ecology 44: 1095–1105.

    Article  CAS  Google Scholar 

  • Søndergaard, M., T. L. Lauridsen, L. S. Johansson & E. Jeppesen, 2017. Nitrogen or phosphorus limitation in lakes and its impact on phytoplankton biomass and submerged macrophyte cover. Hydrobiologia 795: 1–14.

    Article  CAS  Google Scholar 

  • Spooner, D. E., P. C. Frost, H. Hillebrand, M. T. Arts, O. Puckrin & M. A. Xenopoulos, 2013. Nutrient loading associated with agriculture land use dampens the importance of consumer-mediated niche construction. Ecology Letters 16: 1115–1125.

    Article  PubMed  Google Scholar 

  • Steffan, S. A., Y. Chikaraishi, D. R. Horton, N. Ohkouchi, M. E. Singleton, E. Miliczky, D. B. Hogg & V. P. Jones, 2013. Trophic hierarchies illuminated via amino acid isotopic analysis. PloS one 8: e76152.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Steffen, W., K. Richardson, J. Rockstrom, S. E. Cornell, I. Fetzer, E. M. Bennett, R. Biggs, S. R. Carpenter, W. de Vries, C. A. de Wit, C. Folke, D. Gerten, J. Heinke, G. M. Mace, L. M. Persson, V. Ramanathan, B. Reyers & S. Sorlin, 2015. Planetary boundaries: guiding human development on a changing planet. Science 347: 1259855.

    Article  PubMed  CAS  Google Scholar 

  • Steiner, C. F., Z. T. Long, J. A. Krumins & J. P. Morin, 2005. Temporal stability of aquatic food webs: partitioning the effects of species diversity, species composition and enrichment. Ecology Letters 8: 819–828.

    Article  Google Scholar 

  • Steiner, C. F., Z. T. Long, J. A. Krumins & P. J. Morin, 2006. Population and community resilience in multitrophic communities. Ecology 87: 996–1007.

    Article  PubMed  Google Scholar 

  • Sterner, R. W., 2008. On the phosphorus limitation paradigm for lakes. International Review of Hydrobiology 93: 433–445.

    Article  CAS  Google Scholar 

  • Sterner, R. W. & J. J. Elser, 2002. Ecological stoichiometry: the biology of elements from molecules to the biosphere. Princeton University Press, Princeton.

    Google Scholar 

  • Stewart, S. D., D. P. Hamilton, W. T. Baisden, M. Dedual, I. C. Duggan, B. J. Hicks & B. S. Graham, 2017. Variable littoral-pelagic coupling as a food-web response to seasonal changes in pelagic primary production. Freshwater Biol. 00: 1–18.

    Google Scholar 

  • Stouffer, D. B. & J. Bascompte, 2010. Understanding food-web persistence from local to global scales. Ecology Letters 13: 154–161.

    Article  PubMed  Google Scholar 

  • Stouffer, D. B. & J. Bascompte, 2011. Compartmentalization increases food-web persistence. Proceedings of the National Academy of Sciences of the United States of America 108: 3648–3652.

    Article  PubMed  PubMed Central  Google Scholar 

  • Thébault, E. & C. Fontaine, 2010. Stability of ecological communities and the architecture of mutualistic and trophic networks. Science 329: 853–856.

    Article  PubMed  CAS  Google Scholar 

  • Thompson, R. M., U. Brose, J. A. Dunne, R. O. Hall, S. Hladyz, R. L. Kitching, N. D. Martinez, H. Rantala, T. A. Romanuk, D. B. Stouffer & J. M. Tylianakis, 2012. Food webs: reconciling the structure and function of biodiversity. Trends in Ecology & Evolution 27: 689–697.

    Article  Google Scholar 

  • Thrane, J. E., D. O. Hessen & T. Andersen, 2017. Plasticity in algal stoichiometry: experimental evidence of a temperature-induced shift in optimal supply N: P ratio. Limnology & Oceanography 62: 1346–1354.

    Article  CAS  Google Scholar 

  • Troitskaya, E., V. Blinov, V. Ivanov, A. Zhdanov, R. Gnatovsky, E. Sutyrina & M. Shimaraev, 2015. Cyclonic circulation and upwelling in Lake Baikal. Aquatic Sciences 77: 171–182.

    Article  CAS  Google Scholar 

  • Vadeboncoeur, Y., M. J. Vander Zanden & D. M. Lodge, 2002. Putting the Lake Back Together: reintegrating Benthic Pathways into Lake Food Web Models. BioScience 52: 44.

    Article  Google Scholar 

  • Vadeboncoeur, Y., K. S. McCann, M. J. Vander Zanden & J. B. Rasmussen, 2005. Effects of Multi-chain omnivory on the strength of trophic control in lakes. Ecosystems 8: 682–693.

    Article  Google Scholar 

  • Vadeboncoeur, Y., P. B. McIntyre & M. J. Vander Zanden, 2011. Borders of biodiversity: life at the edge of the world’s large lakes. BioScience 61: 526–537.

    Article  Google Scholar 

  • Vallentyne, J. R., 1974. The algal bowl: lakes and man. Depatment of Fisheries and Oceans, Scientific Information and Publications Branch, Ottawa.

  • Vander Zanden, M. J. & J. B. Rasmussen, 2001. Variation in δ15N and δ13C trophic fractionation: implications for aquatic food web studies. Limnology and Oceanography 46: 2061–2066.

    Article  CAS  Google Scholar 

  • Vander Zanden, M. J. & Y. Vadeboncoeur, 2002. Fishes as integrators of benthic and pelagic food webs in lakes. Ecology 83: 2152–2161.

    Article  Google Scholar 

  • Vanni, M. J. & C. D. Layne, 1997. Nutrient recycling and herbivory as mechanisms in the “top-down” effect of fish on algae in lakes. Ecology 78: 21–40.

    Google Scholar 

  • Vanni, M. J. & P. B. McIntyre, 2016. Predicting nutrient excretion of aquatic animals with metabolic ecology and ecological stoichiometry: a global synthesis. Ecology 97: 3460–3471.

    Article  PubMed  Google Scholar 

  • Vanni, M. J., K. K. Arend, M. T. Bremigan, D. B. Bunnell, J. E. Garvey, M. J. Gonzalez, W. H. Renwick, P. A. Soranno & R. A. Stein, 2005. Linking landscapes and food webs: effects of omnivorous fish and watersheds on reservoir ecosystems. Bioscience 55: 155–167.

    Article  Google Scholar 

  • Vanni, M. J., A. M. Bowling, E. M. Dickman, R. S. Hale, K. A. Higgins, M. J. Horgan, L. B. Knoll, W. H. Renwick & R. A. Stein, 2006. Nutrient cycling by fish supports relatively more primary production as lake productivity increases. Ecology 87: 1696–1709.

    Article  PubMed  Google Scholar 

  • Vanni, M. J., G. Boros & P. B. McIntyre, 2013. When and fish sources vs. sinks of nutrients in lake ecosystems? Ecology 94: 2195–2206.

    Article  PubMed  Google Scholar 

  • Verburg, P., R. E. Hecky & H. Kling, 2003. Ecological consequences of a century of warming in Lake Tanganyika. Science 301: 505–508.

    Article  PubMed  CAS  Google Scholar 

  • Vincent, W. F., 1983. Phytoplankton production and winter mixing: contrasting effects in two oligotrophic lakes. Journal of Ecology 71: 1–20.

    Article  CAS  Google Scholar 

  • Vitousek, P. M., H. A. Mooney, J. Lubchenco & J. M. Melillo, 1997. Human domination of Earth’s ecosystems. Science 277: 494–499.

    Article  CAS  Google Scholar 

  • Vollenweider, J. R., 1976. Advances in defining critical loading levels for phosphorus in lake eutrophication. Memorie dell’Istituto Italiano di Idrobiologia 33: 53–83.

    CAS  Google Scholar 

  • Walsh, J. R., S. E. Munoz & M. J. Vander Zanden, 2016. Outbreak of an undetected invasive species triggered by a climate anomaly. Ecosphere 7: e01628.

    Article  Google Scholar 

  • Wang, S. & U. Brose, 2017. Biodiversity and ecosystem functioning in food webs: the vertical diversity hypothesis. Ecology Letters. https://doi.org/10.1111/ele.12865.

    Article  PubMed  Google Scholar 

  • Ward, C. L., K. S. McCann & N. Rooney, 2015. HSS revisited: multi-channel processes mediate trophic control across a productivity gradient. Ecology Letters. https://doi.org/10.1111/ele.12498.

    Article  PubMed  Google Scholar 

  • Weber, M. J. & M. L. Brown, 2013. Continuous, pulsed and disrupted nutrient subsidy effects on ecosystem productivity, stability, and energy flow. Ecosphere 4: 1–13.

    Article  Google Scholar 

  • White, P. A., J. Kalff, J. B. Rasmussen & J. M. Gasol, 1991. The effect of temperature and algal biomass on bacterial production and specific growth rate in freshwater and marine habitats. Microbial Ecology 21: 99–118.

    Article  PubMed  CAS  Google Scholar 

  • Winder, M. & D. E. Schindler, 2004. Climate change uncouples trophic interactions in an aquatic ecosystem. Ecology 85: 2100–2106.

    Article  Google Scholar 

  • Wipfli, M. S., J. S. Richardson & R. J. Naiman, 2007. Ecological linkages between headwaters and downstream ecosystems: transport of organic matter, invertebrates, and wood down headwater channels. Journal of the American Water Resources Association 43: 72–85.

    Article  Google Scholar 

  • Wüest, A. & A. Lorke, 2003. Small scale hydrodynamics in lakes. Annual Review of Fluid Mechanics 35: 373–412.

    Article  Google Scholar 

  • Xue, D. M., J. Botte, B. De Baets, F. Accoe, A. Nestler, P. Taylor, O. Van Cleemput, M. Berglund & P. Boeckx, 2009. Present limitations and future prospects of stable isotope methods for nitrate source identification in surface- and groundwater. Water Research 43: 1159–1170.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Mark McCarthy and two anonymous reviewers provided helpful comments that improved on an earlier draft of this manuscript. SS was funded by a Ph.D. scholarship from the Advocates for the Tongariro River. SDS, DPH, PV and ICD were assisted by funding from the Ministry of Business, Innovation and Employment for Enhancing the Health and Resilience of New Zealand Lakes (UOWX1503). WTB was supported by NZ funding to GNS Science (GCT84 and GWR43).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon D. Stewart.

Additional information

Handling editor: Karl E. Havens

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stewart, S.D., Hamilton, D.P., Baisden, W.T. et al. The role of mobile consumers in lake nutrient cycles: a brief review. Hydrobiologia 818, 11–29 (2018). https://doi.org/10.1007/s10750-018-3603-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-018-3603-2

Keywords

Navigation