, Volume 818, Issue 1, pp 11–29 | Cite as

The role of mobile consumers in lake nutrient cycles: a brief review

  • Simon D. Stewart
  • David P. Hamilton
  • W. Troy Baisden
  • Piet Verburg
  • Ian C. Duggan
Review Paper


We summarise current understanding of consumer recycling in lake nutrient cycles and expand on it by integrating emerging knowledge from food web ecology. The role of consumer nutrient recycling (CNR) is initially framed in the wider context of lake nutrient cycling, which includes hydrodynamic and biogeochemical processes, and their responses to global environmental change. Case studies are used to demonstrate that effects of CNR on lake ecosystems range widely, from reduced nutrient cycling rates to exacerbation of eutrophication. CNR depends on consumer biomass, body size and diet, remaining relatively consistent through the year and becoming important as other fluxes seasonally ebb. Universal patterns in food web structure, for example, consumer–resource biomass ratios, body size scaling and relationships between trophic level and diet breadth, are used to demonstrate the predictability of CNR effects. Larger, mobile, top predators excrete nutrients at a lower rate but over a wider range, linking nutrient cycles across habitats. Smaller-bodied, lower trophic level consumers have strong localised nutrient cycling effects associated with their limited mobility. Global environmental-change drivers that alter food web structure are likely to have the greatest impact on CNR rates and should direct future studies.


Food web Recycling Excretion Body size Biomass Littoral pelagic coupling 



Mark McCarthy and two anonymous reviewers provided helpful comments that improved on an earlier draft of this manuscript. SS was funded by a Ph.D. scholarship from the Advocates for the Tongariro River. SDS, DPH, PV and ICD were assisted by funding from the Ministry of Business, Innovation and Employment for Enhancing the Health and Resilience of New Zealand Lakes (UOWX1503). WTB was supported by NZ funding to GNS Science (GCT84 and GWR43).


  1. Adrian, R., C. M. O’Reilly, H. Zagarese, S. B. Baines, D. O. Hessen, W. B. Keller, D. M. Livingstone, R. Sommaruga, D. Straile, E. van Donk, G. A. Weyhenmeyer & M. Winder, 2010. Lakes as sentinels of climate change. Limnology & Oceanography 54: 2283–2297.CrossRefGoogle Scholar
  2. Allgeier, J. E., D. E. Burkepile & C. A. Layman, 2017. Animal pee in the sea: consumer-mediated nutrient dynamics in the world’s changing oceans. Global Change Biology. Scholar
  3. Amado, A. M., F. Meirelles-Pereira, L. O. Vidal, H. Sarmento, A. L. Suhett, V. F. Farjalla, J. B. Cotner & F. Roland, 2013. Tropical freshwater ecosystems have lower bacterial growth efficiency than temperate ones. Frontiers in Microbiology 4: 167.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Angeler, D. G. & C. R. Allen, 2016. Quantifying resilience. Journal of Applied Ecology 53: 617–624.CrossRefGoogle Scholar
  5. Antenucci, J. P. & J. Imberger, 2001. Energetics of long internal gravity waves in large lakes. Limnology and Oceanography 46: 1760–1773.CrossRefGoogle Scholar
  6. Attayde, J. L. & L.-A. Hansson, 2001. Fish-mediated nutrient recycling and the trophic cascade in lakes. Canadian Journal of Fisheries and Aquatic Sciences 58: 1924–1931.CrossRefGoogle Scholar
  7. Barraquand, F., S. Louca, K. C. Abbott, C. A. Cobbold, D. L. DeAngelis, B. D. Elderd, J. W. Fox, P. Greenwood, F. Hilker, D. L. Murry, C. R. Stieha, R. A. Taylor, K. Vitense, G. S. K. Wolkiwicz & R. C. Tyson, 2017. Moving forward in circles: challenges and opportunities in modelling population cycles. Ecology Letters. Scholar
  8. Barnes, C., D. Maxwell, D. C. Reuman & S. Jennings, 2010. Global patterns in predator–prey size relationships reveal size dependency of trophic transfer efficiency. Ecology 91: 222–232.PubMedCrossRefGoogle Scholar
  9. Bartrons, M., L. Camarero & J. Catalan, 2010. Isotopic composition of dissolved inorganic nitrogen in high mountain lakes: variation with altitude in the Pyrenees. Biogeosciences 7: 1469–1479.CrossRefGoogle Scholar
  10. Baustian, M. M., G. J. A. Hansen, A. de Kluijver, K. Robinson, E. N. Henry, L. B. Knoll, K. C. Rose, & C. C. Carey, 2014. Linking the bottom to the top in aquatic ecosystems: mechanisms and stressors of benthic-pelagic coupling. Eco-DAS X Symposium Proceedings 2014: 25–47.Google Scholar
  11. Beisner, B. E., 2001. Plankton community structure in fluctuating environments and the role of productivity. Oikos 95: 496–510.CrossRefGoogle Scholar
  12. Beisner, B. E., P. R. Peres-Neto, E. S. Lindstrom, A. Barnett & M. L. Longhi, 2006. The role of environmental and spatial processes in structuring lake communities from bacteria to fish. Ecology 87: 2985–2991.PubMedCrossRefGoogle Scholar
  13. Biddanda, B., M. Ogdahl & J. Cotner, 2001. Dominance of bacterial metabolism in oligotrophic relative to eutrophic waters. Limnology and Oceanography. Scholar
  14. Blanchard, J. L., R. Law, M. D. Castle & S. Jennings, 2010. Coupled energy pathways and the resilience of size-structured food webs. Theoretical Ecology 4: 289–300.CrossRefGoogle Scholar
  15. Bocaniov, S. A., C. Ullmann, K. Rinke, K. G. Lamb & B. Boehrer, 2014. Internal waves and mixing in a stratified reservoir: insights from three-dimensional modeling. Limnologica 49: 52–67.CrossRefGoogle Scholar
  16. Boehrer, B. & M. Schultze, 2008. Stratification Lakes. Reviews of Geophysics 46: 1–27.CrossRefGoogle Scholar
  17. Brose, U., T. Jonsson, E. L. Berlow, P. H. Warren, C. Banasek-Richter, L.-F. Bersier, J. L. Blanchard, T. Brey, S. R. Carpenter, M.-F. Cattin Blandenier, L. Cushing, H. A. Dawah, A. I. Dell, F. Edwards, S. Harper-Smith, U. Jacob, M. E. Ledger, N. D. Martinez, J. Memmott, K. Mintenbeck, J. K. Pinnegar, B. C. Rall, T. S. Rayner, D. C. Reuman, L. Ruess, W. Ulrich, R. J. Williams, G. Woodward & J. E. Cohen, 2006. Consumer-resource body-size relationships in natural food webs. Ecology 87: 2411–2417.PubMedCrossRefGoogle Scholar
  18. Brown, J. H., J. F. Gillooly, A. P. Allen, V. M. Savage & G. B. West, 2004. Toward a metabolic theory of ecology. Ecology 85: 1771–1789.CrossRefGoogle Scholar
  19. Carey, C. C., B. W. Ibelings, E. P. Hoffmann, D. P. Hamilton & J. D. Brookes, 2012. Eco-physiological adaptations that favour freshwater cyanobacteria in a changing climate. Water Research 46: 1394–1407.PubMedCrossRefGoogle Scholar
  20. Carpenter, S. R., 2003. Regime Shifts in Lake Ecosystems: Pattern and Variation. Excellence in Ecology, Vol. 15. International Ecology Institute, Oldendorf/Luhe.Google Scholar
  21. Carpenter, S. R., J. R. Kitchell, J. R. Hodgson, P. A. Cochran, J. J. Elser, M. M. Elser, D. M. Lodge, D. Kretchmer & X. He, 1987. Regulation of lake primary productivity by food web structure. Ecology 68: 1863–1876.PubMedCrossRefGoogle Scholar
  22. Carpenter, S. R., K. L. Cottingham & D. E. Schindler, 1992. Biotic feedbacks in lake phosphorus cycles. Trends in Ecology & Evolution 7: 332–336.CrossRefGoogle Scholar
  23. Carpenter, S. R., E. H. Stanley & M. J. Vander Zanden, 2011. State of the world’s freshwater ecosystems: physical, chemical, and biological changes. Annual Review of Environment and Resources 36: 75–99.CrossRefGoogle Scholar
  24. Casini, M., J. Hjelm, J.-C. Molinero, J. Lövgren, M. Cardinale, V. Bartolino, A. Belgrano & G. Kornilovs, 2009. Trophic cascades promote threshold-like shifts. PNAS 106: 197–202.PubMedCrossRefGoogle Scholar
  25. Cebrian, J., 2015. Energy flows in ecosystems. Science 349: 1053–1054.PubMedCrossRefGoogle Scholar
  26. Chikaraishi, Y., N. O. Ogawa, Y. Kashiyama, Y. Takano, H. Suga, A. Tomitani, H. Miyashita, H. Kitazato & N. Ohkouchi, 2009. Determination of aquatic food-web structure based on compound-specific nitrogen isotopic composition of amino acids. Limnology and Oceanography: Methods 7: 740–750.Google Scholar
  27. Cohen, J. E., T. Jonsson & S. R. Carpenter, 2003. Ecological community description using the food web, species abundance, and body size. Proceedings of the National Academy of Sciences 100: 1781–1786.CrossRefGoogle Scholar
  28. Conroy, J. D., W. J. Edwards, R. A. Pontius, D. D. Kane, H. Zhang, J. F. Shea, J. N. Richey & C. A. Culver, 2005. Soluble nitrogen and phosphorus excretion of exotic freshwater mussels (Dreissena spp.): potential impacts for nutrient remineralisation in western Lake Erie. Freshwater Biology 50: 1146–1162.CrossRefGoogle Scholar
  29. Corman, J. R., P. B. McIntyre, B. Kuboja, W. Mbemba, D. Fink, C. W. Wheeler, C. Gans, E. Michel & A. S. Flecker, 2010. Upwelling couples chemical and biological dynamics across the littoral and pelagic zones of Lake Tanganyika, East Africa. Limnology and Oceanography 55: 214–224.CrossRefGoogle Scholar
  30. Cotner, J. B. & B. A. Biddanda, 2002. Small players, large role: microbial influence on biogeochemical processes in pelagic aquatic ecosystems. Ecosystems 5: 105–121.CrossRefGoogle Scholar
  31. DeLong, J. P., B. Gilbert, J. B. Shurin, V. M. Savage, B. T. Barton, C. F. Clements, A. I. Dell, H. S. Greig, C. D. G. Harley, P. Kratina, K. S. McCann, T. D. Tunney, D. A. Vasseur & M. I. O’Connor, 2015. The body size dependence of trophic cascades. The American Naturalist 185: 354–366.PubMedCrossRefGoogle Scholar
  32. Dong, X., A. Ruhí & N. B. Grimm, 2017. Evidence for self-organization in determining spatial patterns of stream nutrients, despite primacy of the geomorphic template. Proceedings of the National Academy of Sciences: Scholar
  33. Elser, J. J., W. F. Fagan, R. F. Denno, D. R. Dobberfuhl, A. Folarin, A. Huberty, S. Interlandi, S. S. Kilham, E. McCauley, K. L. Schulz, E. H. Siemann & R. W. Sterner, 2000. Nutritional constraints in terrestrial and freshwater food webs. Nature 408: 578–580.PubMedCrossRefGoogle Scholar
  34. Elser, J. J., K. Acharya, M. Kyle, J. Cotner, W. Makino, T. Markow, T. Watts, S. Hobbie, W. Fagan, J. Schade, J. Hood & R. W. Sterner, 2003. Growth rate-stoichiometry couplings in diverse biota. Ecology Letters 6: 936–943.CrossRefGoogle Scholar
  35. Estes, J. A., J. Terborgh, J. S. Brashares, M. E. Power, J. Berger, W. J. Bond, S. R. Carpenter, T. E. Essington, R. D. Holt, J. B. C. Jackson, R. J. Marquis, L. Oksanen, T. Oksanen, R. T. Paine, E. K. Pikitch, W. J. Ripple, S. A. Sandin, M. Scheffer, T. W. Schoener, J. B. Shurin, A. R. E. Sinclair, M. E. Soulé, R. Virtanen & D. A. Wardle, 2011. Trophic downgrading of planet Earth. Science 333: 301–306.PubMedCrossRefGoogle Scholar
  36. Farnsworth, K. D., L. Albantakis & T. Caruso, 2017. Unifying concepts of biological function from molecules to ecosystems. Oikos 126: 1367–1376.CrossRefGoogle Scholar
  37. Fenchel, T., 2008. The microbial loop – 25 years later. Journal of Experimental Marine Biology and Ecology 366: 99–103.CrossRefGoogle Scholar
  38. Forbes, S. A. 1887. The lake as a microcosm. Bull. of the Scientific Association (Peoria, IL): 77–87.Google Scholar
  39. Fussmann, G. F., 2008. The lake as a system of differential equations - a paradigm for the aquatic ecologist of the 21st century? International Review of Hydrobiology 93: 532–540.CrossRefGoogle Scholar
  40. Garzke, J., S. H. Ishmar & U. Sommer, 2015. Climate change affects low trophic level marine consumers: warming decreases copepod size and abundance. Oikos 177: 849–860.Google Scholar
  41. Hall, R. O., B. J. Koch, M. C. Marshall, B. W. Taylor & L. M. Tronstad, 2007. How body size mediates the role of animals in nutrient clcying in aquatic ecosystems. In Hildrew, A., D. Raffaelli & R. Edmonds-Brown (eds), Body size: the structure and function of aquatic ecosystems. Cambridge University Press, Cambridge: 286–305.CrossRefGoogle Scholar
  42. Hamilton, D. P., N. Salmaso & H. W. Paerl, 2016. Mitigating harmful cyanobacterial blooms: strategies for control of nitrogen and phosphorus loads. Aquatic Ecology 2016: 50. Scholar
  43. Hatton, I. A., K. S. McCann, J. M. Fryxell, T. J. Davies, M. Smerlak, A. R. E. Sinclair & M. Loreau, 2015. The predator-prey power law: biomass scaling across terrestrial and aquatic biomes. Science 349: aac6284.PubMedCrossRefGoogle Scholar
  44. He, X., J. F. Kitchell, S. R. Carpenter, J. R. Hodgson, D. E. Schindler & K. L. Cottingham, 1993. Food web structure and long-term phosphorus recycling: a simulation model evaluation. Transactions of the American Fisheries Society 122: 773–783.CrossRefGoogle Scholar
  45. Hellweger, F. L., 2017. 75 years since Monod: it is time to increase the complexity of our predictive ecosystem models (opinion). Ecological Modelling 346: 77–87.CrossRefGoogle Scholar
  46. Higgins, S. N., B. Althouse, S. P. Devlin, Y. Vadeboncoeur & M. J. Vander Zanden, 2014. Potential for large-bodied zooplankton and dreissenids to alter the productivity and autotrophic structure of lakes. Ecology 95: 2257–2267.PubMedCrossRefGoogle Scholar
  47. Horne, C. R., A. G. Hirst & D. Atkinson, 2015. Temperature-size responses match latitudinal-size clines in arthropods, revealing critical differences between aquatic and terrestrial species. Ecology letters 18: 327–335.PubMedCrossRefGoogle Scholar
  48. Houlihan, D. F., 1991. Protein turnover in ectotherms and its relationships to energetics advances in comparative and environmental physiology. Springer, Berlin: 1–43.Google Scholar
  49. Imberger, J. & J. C. Patterson, 1990. Physical limnology. Advances in applied mechanics 27: 303–475.CrossRefGoogle Scholar
  50. Ings, N. L., J. Grey, L. King, S. McGowan & A. G. Hildrew, 2017. Modification of littoral algal assemblages by gardening caddisfly larvae. Freshwater Biology 62: 507–518.CrossRefGoogle Scholar
  51. Jennings, S. & J. L. Blanchard, 2004. Fish abundance with no fishing: predictions based on macroecological theory. Journal of Animal Ecology 73: 632–642.CrossRefGoogle Scholar
  52. Jenny, J.-P., P. Francus, A. Normandeau, F. Lapointe, M.-E. Perga, A. E. K. Ojala, A. Schimmelmann & B. Zolitschka, 2015. Global spread of hypoxia in freshwater ecosystems during the last three centuries is caused by rising local human pressure. Global Change Biology 22: 1481–1489.CrossRefGoogle Scholar
  53. Jenny, J., A. Normandeau, P. Francus, Z. E. Taranu, I. Gregory-Eaves, F. Lapointe, J. Jautzy, A. E. K. Ojala, J.-M. Dorioz, A. Schimmelmann & B. Zolitschka, 2016. Urban point sources of nutrients were the leading cause for the historical spread of hypoxia across European lakes. Proceedings of the National Academy of Sciences 113: 12655–12660.CrossRefGoogle Scholar
  54. Kilham, P. & S. Kilham, 1990. Endless summer: internal loading processes dominate nutrient cycling in tropical lakes. Freshwater Biology 23: 379–389.CrossRefGoogle Scholar
  55. Klompmaker, A., M. Kowalewski, J. W. Huntley & S. Finnegan, 2017. Increase in predator-prey size ratios throughout the Phanerozoic history of marine ecosystems. Science 356: 1178–1180.PubMedCrossRefGoogle Scholar
  56. Kraemer B. M., O. Anneville, S. Chandra, M. Dix, E. Kuusisto, D. M. Livingstone, et al. 2015. Morphometry and average temperature affect lake stratification responses to climate change. Geophysical Research Letters 10: 4981–4988.CrossRefGoogle Scholar
  57. Krause, A. E., K. A. Frank, D. M. Mason, R. E. Ulanowicz & W. W. Taylor, 2003. Compartments revealed in food-web structure. Nature 426: 282–286.PubMedCrossRefGoogle Scholar
  58. Kumar, S., R. W. Sterner & J. C. Finlay, 2008. Nitrogen and carbon uptake dynamics in Lake Superior. Journal of Geophysical Research 113: 1–15.Google Scholar
  59. Lagus, A., J. Suomela, H. Helminen, J. Lehtimäki, J. Sipura, K. Sivonen & L. Suominen, 2007. Interaction effects of N: P ratios and frequency of nutrient supply on the plankton community in the northern Baltic Sea. Marine Ecology Progress Series 332: 77–92.CrossRefGoogle Scholar
  60. Lang, B., R. B. Ehnes, U. Brose & B. C. Rall, 2017. Temperature and consumer type dependencies of energy flows in natural communities. Oikos. Scholar
  61. Lavrentyev, P. J., W. S. Gardner & J. R. Johnson, 1997. Cascading trophic effects on aquatic nitrification - experimental-evidence and potential implications. Aquatic Microbial Ecology 13: 161–175.CrossRefGoogle Scholar
  62. Layman, C. A., S. T. Giery, S. Buhler, R. Rossi, T. Penland, M. N. Henson, A. K. Bogdanoff, M. V. Cove, A. D. Irizarry, C. M. Schalk & S. K. Archer, 2015. A primer on the history of food web ecology: fundamental contributions of fourteen researchers. Food Webs 4: 14–24.CrossRefGoogle Scholar
  63. Lehmann, M. F., M. Simona, S. Wyss, J. Blees, C. H. Frame, H. Niemann, M. Veronesi & J. Zopfi, 2015. Powering up the “biogeochemical engine”: the impact of exceptional ventilation of a deep meromictic lake on the lacustrine redox, nutrient, and methane balances. Frontiers in Earth Science 3: 1–13.CrossRefGoogle Scholar
  64. Levin, S. A., 1999. Fragile dominion: complexity and the commons. Perseus Books, Reading.Google Scholar
  65. Levin, S. A., 2005. Self-organization and the Emergence of Complexity in Ecological Systems. BioScience 55: 1075–1079.[1075:SATEOC]2.0.CO;2.CrossRefGoogle Scholar
  66. Lewis, W. M. J., 1996. Tropical lakes: how latitude makes a difference. In Schiemer, F. & K. Boland (eds), Perspectives in Tropical Limnology. SPB Academic Publishing, Amsterdam: 43–64.Google Scholar
  67. Lewis, W. J., 2010. Biogeochemistry of tropical lakes. Verh Int Verein Limnol 30: 1595–1603.Google Scholar
  68. Li, W. & M. H. H. Stevens, 2010. How enrichment, ecosystem size, and their effects on species richness co-determine the stability of microcosm communities. Oikos 119: 686–695.CrossRefGoogle Scholar
  69. Ludsin, S. A., M. W. Kershner, K. A. Blocksom, R. L. Knight & R. A. Stein, 2001. Life after death in Lake Erie: nutrient controls drive fish soecies richness, rehabilitation. Ecological Applications 11: 731–746.CrossRefGoogle Scholar
  70. Macintyre, S., J. F. Clark, R. Jellison & J. P. Fram, 2009. Turbulent mixing induced by nonlinear internal waves in Mono Lake, California. Limnology & Oceanography 54: 2255–2272.CrossRefGoogle Scholar
  71. McCann, K. S., A. Hastings & G. R. Huxel, 1998. Weak trophic interactions and the balance of nature. Nature 395: 794–798.CrossRefGoogle Scholar
  72. McCann, K. S., J. B. Rasmussen & J. Umbanhowar, 2005. The dynamics of spatially coupled food webs. Ecology letters 8: 513–523.PubMedCrossRefGoogle Scholar
  73. McCarthy, V. & K. Irvine, 2010. A test of stoichiometry across six Irish lakes of low-moderate nutrient status and contrasting hardness. Journal of Plankton Research 32: 15–29. CrossRefGoogle Scholar
  74. McIntyre, P. B., A. S. Flecker, M. J. Vanni, J. M. Hood, B. W. Taylor & S. A. Thomas, 2008. Fish distributions and nutrient cycling in streams: can fish create biogeochemical hotspots? Ecology 89: 2335–2346.PubMedCrossRefGoogle Scholar
  75. McMeans, B. C., K. S. McCann, M. Humphries, N. Rooney & A. T. Fisk, 2015. Food web structure in temporally-forced ecosystems. Trends in Ecology and Evolution 30: 662–672.PubMedCrossRefGoogle Scholar
  76. McMeans, B. C., K. S. McCann, T. D. Tunney, A. T. Fisk, A. M. Muir, N. P. Lester, B. J. Shuter & N. Rooney, 2016. The adaptive capacity of lake food webs: from individuals to ecosystems. Ecological Monographs 86: 4–19.CrossRefGoogle Scholar
  77. Middelburg, J. J., 2014. Stable isotopes dissect aquatic food webs from the top to the bottom. Biogeosciences 11: 2357–2371. Scholar
  78. Minagawa, M. & E. Wada, 1984. Stepwise enrichment of 15N along food chains: further evidence and the relation between δ15N and animal age. Geochimica et Cosmochimica Acta 48: 1135–1140.CrossRefGoogle Scholar
  79. Monismith, S. G., J. Imberger & M. L. Morison, 1990. Convective motions in the sidearm of a small reservoir. Source. Limnology and Oceanography 35: 1676–1702.CrossRefGoogle Scholar
  80. Moss, B., 2012. Cogs in the endless machine: lakes, climate change and nutrient cycles: a review. The Science of the Total Environment 434: 130–142.PubMedCrossRefGoogle Scholar
  81. Neutel, A. M., J. A. P. Heesterbeek, J. van de Koppel, G. Hoenderboom, A. Vos, C. Kaldeway, F. Berendse & P. C. de Ruiter, 2007. Reconciling complexity with stability in naturally assembling food webs. Nature 449: 599–602.PubMedCrossRefGoogle Scholar
  82. OECD, 1982. Eutrophication of waters—monitoring, assessment and control. Organisation for Economic Co-operation and Development, Paris: 154.Google Scholar
  83. O’Neil, J. M., T. W. Davis, M. A. Burford & C. J. Gobler, 2012. The rise of harmful cyanobacteria blooms: the potential roles of eutrophication and climate change. Harmful Algae 14: 313–334.CrossRefGoogle Scholar
  84. O’Reilly, C. M., S. R. Alin, P.-D. D. Plisnier, A. S. Cohen & B. A. McKee, 2003. Climate change decreases aquatic ecosystem productivity of Lake Tanganyika, Africa. Nature 424: 766–768.PubMedCrossRefGoogle Scholar
  85. O’Reilly, C. M., R. J. Rowley, P. Schneider, J. D. Lenters, P. B. Mcintyre, B. M. Kraemer, et al., 2015. Rapid and highly variable warming of lake surface waters around the globe. Geophysical Research Letters 42: 10773–10781.CrossRefGoogle Scholar
  86. Oliver, R. L., D. P. Hamilton, J. D. Brookes & G. G. Ganf, 2012. Introduction to the cyanobacteria. In Whitton, B. A. (ed.), Ecology of Cyanobacteria. Springer, Dordrecht: 155–189.CrossRefGoogle Scholar
  87. Paerl, H. W. & J. Huisman, 2008. Blooms Like It Hot. Science 320: 57–58.PubMedCrossRefGoogle Scholar
  88. Paerl, H. W. & J. L. Pinckney, 1996. A Mini-review of microbial consortia: their roles in aquatic production and biogeochemical cycling. Microbial Ecology 31: 225–247.PubMedCrossRefGoogle Scholar
  89. Petchey, O. L., A. P. Beckerman, J. O. Riede & P. H. Warren, 2008. Size, foraging, and food web structure. Proceedings of the National Academy of Sciences of the United States of America 105: 4191–4196.PubMedPubMedCentralCrossRefGoogle Scholar
  90. Polis, G. A., W. B. Anderson & R. D. Holt, 1997. Toward an integration of landscape and food web ecology: the dynamics of spatially subsidized food webs. Annual Review of Ecology and Systematics 28: 289–316.CrossRefGoogle Scholar
  91. Pöschke, F., J. Lewandowski, C. Engelhardt, K. Preuß, M. Oczipka, T. Ruhtz & G. Kirillin, 2015. Upwelling of deep water during thermal stratification onset - A major mechanism of vertical transport in small temperate lakes in spring? Water Resources Research 51: 9612–9627.CrossRefGoogle Scholar
  92. Post, D. M., M. E. Conners & D. S. Goldberg, 2000. Prey preference by a top predator and the stability of linked food chains. Ecology 81: 8–14.CrossRefGoogle Scholar
  93. Proulx, S. R., D. E. L. Promislow & P. C. Phillips, 2005. Network thinking in ecology and evolution. Trends in Ecology & Evolution 20: 345–353.CrossRefGoogle Scholar
  94. Ptacnik, R., S. D. Moorthi & H. Hillebrand, 2010. Hutchinson reversed, or why there need to be so many species. In Woodward, G. (ed.), Advances in ecological research. Academic Press, Burlington: 1–43.Google Scholar
  95. Ptacnik, R., A. Gomes, S. J. Royer, T. M. Tsagaraki, A. F. Sazhin, S. A. Berger, A. Calbet, J. C. Nejstgaard, S. Isari, S. D. Moorthi, R. Ptacnikova, M. Striebel, S. Zervoudaki, K. Altoja, P. Dimitriou, P. Laas, A. Gazihan-Akoglu, R. A. Martínez, S. Schabhuttl, I. Santi, D. Sousoni, J. M. Gasol & P. Pitta, 2014. A light-induced shortcut in the planktonic microbial loop. Scientific Reports 6: 29286.CrossRefGoogle Scholar
  96. Robinson, D., 2001. 15N as an integrator of the nitrogen cycle. Trends in Ecology & Evolution 16: 153–162.CrossRefGoogle Scholar
  97. Rockström, J., W. Steffen, K. Noone, Å. Persson, F. S. Chapin, E. Lambin, T. M. Lenton, M. Scheffer, C. Folke, H. J. Schellnhuber, B. Nykvist, C. A. de Wit, T. Hughes, S. van der Leeuw, H. Rodhe, S. Sörlin, R. Costanza, U. Svedin, M. Falkenmark, L. Karlberg, R. W. Corell, V. J. Fabry, J. Hansen, B. Walker, D. Liverman, K. Richardson, P. Crutzen & J. Foley, 2009. Planetary boundaries: exploring the safe operating space for humanity. Ecology and Society 14: 472–475.CrossRefGoogle Scholar
  98. Rolls, R. J., B. Hayden & K. K. Kahilainen, 2017. Conceptualising the interactive effects of climate change and biological invasions on subarctic freshwater fish. Ecology and Evolution. Scholar
  99. Romanuk, T. N., A. Hayward & J. A. Hutchings, 2011. Trophic level scales positively with body size in fishes. Global Ecology and Biogeography 20: 231–240.CrossRefGoogle Scholar
  100. Rooney, N. & K. S. McCann, 2012. Integrating food web diversity, structure and stability. Trends in Ecology & Evolution 27: 40–46.CrossRefGoogle Scholar
  101. Rooney, N., K. McCann, G. Gellner & J. C. Moore, 2006. Structural asymmetry and the stability of diverse food webs. Nature 442: 265–269.PubMedCrossRefGoogle Scholar
  102. Sahoo, G. B., A. L. Forrest, S. G. Schladow, J. E. Reuter, R. Coats & M. Dettinger, 2016. Climate change impacts on lake thermal dynamics and ecosystem vulnerabilities. Limnology and Oceanography 61: 496–507.CrossRefGoogle Scholar
  103. Scheffer, M. & S. R. Carpenter, 2003. Catastrophic regime shifts in ecosystems: linking theory to observation. Trends in Ecology and Evolution 18: 648–656.CrossRefGoogle Scholar
  104. Scheffer, M., S. Carpenter, J. A. Foley, C. Folke & B. Walker. 2001. Catastrophic shifts in ecosystems. Nature 413: 591–596.PubMedCrossRefGoogle Scholar
  105. Schindler, D. E., J. F. Kitchell, X. He, S. R. Carpenter, J. R. Hodgson & K. L. Cottingham, 1993. Food web structure and phosphorus cycling in lakes. Transactions of the American Fisheries Society 122: 756–772.CrossRefGoogle Scholar
  106. Schindler, D. E. & M. D. Scheuerell, 2002. Habitat coupling in lake ecosystems. Oikos 98: 177–189.CrossRefGoogle Scholar
  107. Sentis, A., A. Binzer & D. S. Boukal, 2017. Temperature-size responses alter food chain persistence across environmental gradients. Ecology letters: Scholar
  108. Sereda, J. M., J. J. Hudson, W. D. Taylor & E. Demers, 2008. Fish as sources and sinks of nutrients in lakes. Freshwater Biology 53: 278–289.Google Scholar
  109. Shostell, J. & P. A. Bukaveckas, 2004. Seasonal and interannual variation in nutrient fluxes from tributary inputs, consumer recycling and algal growth in a eutrophic river impoundment. Aquatic Ecology 38: 359–373.CrossRefGoogle Scholar
  110. Smith, V. H. & D. W. Schindler, 2009. Eutrophication science: where do we go from here? Trends in Ecology and Evolution 24: 201–207.PubMedCrossRefGoogle Scholar
  111. Somes, C. J., A. Schmittner, E. D. Galbraith, M. F. Lehmann, M. A. Altabet, J. P. Montoya, R. M. Letelier, A. C. Mix, A. Bourbonnais & M. Eby, 2010. Simulating the global distribution of nitrogen isotopes in the ocean. Global Biogeochemical Cycles 24: 1–16.CrossRefGoogle Scholar
  112. Sommer, U., R. Adrian, L. De Senerpont Domis, J. J. Elser, U. Gaedke, B. Ibelings, E. Jeppesen, M. Lürling, J. C. Molinero, W. M. Mooij, E. van Donk & M. Winder, 2012. Beyond the Plankton Ecology Group (PEG) model: mechanisms driving plankton succession. Annual Review of Ecology, Evolution, and Systematics 43: 429–448.CrossRefGoogle Scholar
  113. Søndergaard, M., E. Jeppesen, T. L. Lauridsen, C. Skov, E. H. Van Nes, R. Roijackers, E. Lammens & R. Portielje, 2007. Lake restoration: successes, failures and long-term effects. Journal of Applied Ecology 44: 1095–1105.CrossRefGoogle Scholar
  114. Søndergaard, M., T. L. Lauridsen, L. S. Johansson & E. Jeppesen, 2017. Nitrogen or phosphorus limitation in lakes and its impact on phytoplankton biomass and submerged macrophyte cover. Hydrobiologia 795: 1–14.CrossRefGoogle Scholar
  115. Spooner, D. E., P. C. Frost, H. Hillebrand, M. T. Arts, O. Puckrin & M. A. Xenopoulos, 2013. Nutrient loading associated with agriculture land use dampens the importance of consumer-mediated niche construction. Ecology Letters 16: 1115–1125.PubMedCrossRefGoogle Scholar
  116. Steffan, S. A., Y. Chikaraishi, D. R. Horton, N. Ohkouchi, M. E. Singleton, E. Miliczky, D. B. Hogg & V. P. Jones, 2013. Trophic hierarchies illuminated via amino acid isotopic analysis. PloS one 8: e76152.PubMedPubMedCentralCrossRefGoogle Scholar
  117. Steffen, W., K. Richardson, J. Rockstrom, S. E. Cornell, I. Fetzer, E. M. Bennett, R. Biggs, S. R. Carpenter, W. de Vries, C. A. de Wit, C. Folke, D. Gerten, J. Heinke, G. M. Mace, L. M. Persson, V. Ramanathan, B. Reyers & S. Sorlin, 2015. Planetary boundaries: guiding human development on a changing planet. Science 347: 1259855.PubMedCrossRefGoogle Scholar
  118. Steiner, C. F., Z. T. Long, J. A. Krumins & J. P. Morin, 2005. Temporal stability of aquatic food webs: partitioning the effects of species diversity, species composition and enrichment. Ecology Letters 8: 819–828.CrossRefGoogle Scholar
  119. Steiner, C. F., Z. T. Long, J. A. Krumins & P. J. Morin, 2006. Population and community resilience in multitrophic communities. Ecology 87: 996–1007.PubMedCrossRefGoogle Scholar
  120. Sterner, R. W., 2008. On the phosphorus limitation paradigm for lakes. International Review of Hydrobiology 93: 433–445.CrossRefGoogle Scholar
  121. Sterner, R. W. & J. J. Elser, 2002. Ecological stoichiometry: the biology of elements from molecules to the biosphere. Princeton University Press, Princeton.Google Scholar
  122. Stewart, S. D., D. P. Hamilton, W. T. Baisden, M. Dedual, I. C. Duggan, B. J. Hicks & B. S. Graham, 2017. Variable littoral-pelagic coupling as a food-web response to seasonal changes in pelagic primary production. Freshwater Biol. 00: 1–18.Google Scholar
  123. Stouffer, D. B. & J. Bascompte, 2010. Understanding food-web persistence from local to global scales. Ecology Letters 13: 154–161.PubMedCrossRefGoogle Scholar
  124. Stouffer, D. B. & J. Bascompte, 2011. Compartmentalization increases food-web persistence. Proceedings of the National Academy of Sciences of the United States of America 108: 3648–3652.PubMedPubMedCentralCrossRefGoogle Scholar
  125. Thébault, E. & C. Fontaine, 2010. Stability of ecological communities and the architecture of mutualistic and trophic networks. Science 329: 853–856.PubMedCrossRefGoogle Scholar
  126. Thompson, R. M., U. Brose, J. A. Dunne, R. O. Hall, S. Hladyz, R. L. Kitching, N. D. Martinez, H. Rantala, T. A. Romanuk, D. B. Stouffer & J. M. Tylianakis, 2012. Food webs: reconciling the structure and function of biodiversity. Trends in Ecology & Evolution 27: 689–697.CrossRefGoogle Scholar
  127. Thrane, J. E., D. O. Hessen & T. Andersen, 2017. Plasticity in algal stoichiometry: experimental evidence of a temperature-induced shift in optimal supply N: P ratio. Limnology & Oceanography 62: 1346–1354.CrossRefGoogle Scholar
  128. Troitskaya, E., V. Blinov, V. Ivanov, A. Zhdanov, R. Gnatovsky, E. Sutyrina & M. Shimaraev, 2015. Cyclonic circulation and upwelling in Lake Baikal. Aquatic Sciences 77: 171–182.CrossRefGoogle Scholar
  129. Vadeboncoeur, Y., M. J. Vander Zanden & D. M. Lodge, 2002. Putting the Lake Back Together: reintegrating Benthic Pathways into Lake Food Web Models. BioScience 52: 44.CrossRefGoogle Scholar
  130. Vadeboncoeur, Y., K. S. McCann, M. J. Vander Zanden & J. B. Rasmussen, 2005. Effects of Multi-chain omnivory on the strength of trophic control in lakes. Ecosystems 8: 682–693.CrossRefGoogle Scholar
  131. Vadeboncoeur, Y., P. B. McIntyre & M. J. Vander Zanden, 2011. Borders of biodiversity: life at the edge of the world’s large lakes. BioScience 61: 526–537.CrossRefGoogle Scholar
  132. Vallentyne, J. R., 1974. The algal bowl: lakes and man. Depatment of Fisheries and Oceans, Scientific Information and Publications Branch, Ottawa.Google Scholar
  133. Vander Zanden, M. J. & J. B. Rasmussen, 2001. Variation in δ15N and δ13C trophic fractionation: implications for aquatic food web studies. Limnology and Oceanography 46: 2061–2066.CrossRefGoogle Scholar
  134. Vander Zanden, M. J. & Y. Vadeboncoeur, 2002. Fishes as integrators of benthic and pelagic food webs in lakes. Ecology 83: 2152–2161.CrossRefGoogle Scholar
  135. Vanni, M. J. & C. D. Layne, 1997. Nutrient recycling and herbivory as mechanisms in the “top-down” effect of fish on algae in lakes. Ecology 78: 21–40.Google Scholar
  136. Vanni, M. J. & P. B. McIntyre, 2016. Predicting nutrient excretion of aquatic animals with metabolic ecology and ecological stoichiometry: a global synthesis. Ecology 97: 3460–3471.PubMedCrossRefGoogle Scholar
  137. Vanni, M. J., K. K. Arend, M. T. Bremigan, D. B. Bunnell, J. E. Garvey, M. J. Gonzalez, W. H. Renwick, P. A. Soranno & R. A. Stein, 2005. Linking landscapes and food webs: effects of omnivorous fish and watersheds on reservoir ecosystems. Bioscience 55: 155–167.CrossRefGoogle Scholar
  138. Vanni, M. J., A. M. Bowling, E. M. Dickman, R. S. Hale, K. A. Higgins, M. J. Horgan, L. B. Knoll, W. H. Renwick & R. A. Stein, 2006. Nutrient cycling by fish supports relatively more primary production as lake productivity increases. Ecology 87: 1696–1709.PubMedCrossRefGoogle Scholar
  139. Vanni, M. J., G. Boros & P. B. McIntyre, 2013. When and fish sources vs. sinks of nutrients in lake ecosystems? Ecology 94: 2195–2206.PubMedCrossRefGoogle Scholar
  140. Verburg, P., R. E. Hecky & H. Kling, 2003. Ecological consequences of a century of warming in Lake Tanganyika. Science 301: 505–508.PubMedCrossRefGoogle Scholar
  141. Vincent, W. F., 1983. Phytoplankton production and winter mixing: contrasting effects in two oligotrophic lakes. Journal of Ecology 71: 1–20.CrossRefGoogle Scholar
  142. Vitousek, P. M., H. A. Mooney, J. Lubchenco & J. M. Melillo, 1997. Human domination of Earth’s ecosystems. Science 277: 494–499.CrossRefGoogle Scholar
  143. Vollenweider, J. R., 1976. Advances in defining critical loading levels for phosphorus in lake eutrophication. Memorie dell’Istituto Italiano di Idrobiologia 33: 53–83.Google Scholar
  144. Walsh, J. R., S. E. Munoz & M. J. Vander Zanden, 2016. Outbreak of an undetected invasive species triggered by a climate anomaly. Ecosphere 7: e01628.CrossRefGoogle Scholar
  145. Wang, S. & U. Brose, 2017. Biodiversity and ecosystem functioning in food webs: the vertical diversity hypothesis. Ecology Letters. Scholar
  146. Ward, C. L., K. S. McCann & N. Rooney, 2015. HSS revisited: multi-channel processes mediate trophic control across a productivity gradient. Ecology Letters. Scholar
  147. Weber, M. J. & M. L. Brown, 2013. Continuous, pulsed and disrupted nutrient subsidy effects on ecosystem productivity, stability, and energy flow. Ecosphere 4: 1–13.CrossRefGoogle Scholar
  148. White, P. A., J. Kalff, J. B. Rasmussen & J. M. Gasol, 1991. The effect of temperature and algal biomass on bacterial production and specific growth rate in freshwater and marine habitats. Microbial Ecology 21: 99–118.PubMedCrossRefGoogle Scholar
  149. Winder, M. & D. E. Schindler, 2004. Climate change uncouples trophic interactions in an aquatic ecosystem. Ecology 85: 2100–2106.CrossRefGoogle Scholar
  150. Wipfli, M. S., J. S. Richardson & R. J. Naiman, 2007. Ecological linkages between headwaters and downstream ecosystems: transport of organic matter, invertebrates, and wood down headwater channels. Journal of the American Water Resources Association 43: 72–85.CrossRefGoogle Scholar
  151. Wüest, A. & A. Lorke, 2003. Small scale hydrodynamics in lakes. Annual Review of Fluid Mechanics 35: 373–412.CrossRefGoogle Scholar
  152. Xue, D. M., J. Botte, B. De Baets, F. Accoe, A. Nestler, P. Taylor, O. Van Cleemput, M. Berglund & P. Boeckx, 2009. Present limitations and future prospects of stable isotope methods for nitrate source identification in surface- and groundwater. Water Research 43: 1159–1170.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of ScienceUniversity of WaikatoHamiltonNew Zealand
  2. 2.Rivers InstituteGriffith UniversityQueenslandAustralia
  3. 3.National Isotope CentreGNS ScienceLower HuttNew Zealand
  4. 4.NIWA LtdHamiltonNew Zealand

Personalised recommendations