Advertisement

Hydrobiologia

, Volume 818, Issue 1, pp 1–10 | Cite as

Marine hydrothermal vents as templates for global change scenarios

  • Hans-Uwe Dahms
  • Nikolaos V. Schizas
  • R. Arthur James
  • Lan Wang
  • Jiang-Shiou Hwang
Opinion Paper

Abstract

Subsurface marine hydrothermal vents (HVs) may provide a particular advantage to better understand evolutionary conditions of the early earth and future climate predictions for marine life. Hydrothermal vents (HV) are unique extreme environments that share several similarities with projected global and climate change scenarios in marine systems (e.g., low pH due to high carbon dioxide and sulfite compounds, high temperature and turbidity, high loads of toxic chemicals such as H2S and trace metals). Particularly, shallow hydrothermal vents are easily accessible for short-term and long-term experiments. Research on organisms from shallow HVs may provide insights in the molecular, ecological, and evolutionary adaptations to extreme oceanic environments by comparing them with evolutionary related but less adapted biota. A shallow-water hydrothermal vent system at the northeast Taiwan coast has been intensively studied by several international research teams. These studies revealed astounding highlights at the levels of ecosystem (being fueled by photosynthesis and chemosynthesis), community (striking biodiversity changes due to mass mortality), population (retarded growth characteristics), individual (habitat attractive behavior), and molecular (adaptations to elevated concentrations of heavy metals, low pH, and elevated temperature). The present opinion paper evaluates the potential of shallow hydrothermal vents to be used as a templates for global change scenarios.

Keywords

Shallow hydrothermal vent Early earth environment Global change template Adaptations Extreme habitat 

Notes

Acknowledgements

We are grateful for the funding by the Ministry of Science and Technology, Taiwan from projects (Grant No. MOST 103-2611-M-019-002, MOST 104-2621-M-019-002, MOST 104-2611-M-019-004, MOST 105-2621-M-019-001, MOST 105-2621- M-019-002 and MOST 106-2621-M-019-001) to J. S. Hwang. We further acknowledge funding through MOST 104-2621-M-037-001 and MOST 105-2621-M-037-001 to T. H. Shih. This work was partly supported by a grant from the Research Center for Environmental Medicine, Kaohsiung Medical University (KMU-TP105A27) to H.U.D.

References

  1. Adams, D. K., D. J. Mcgillicuddy, L. Zamudio, A. M. Thurnherr, X. F. Liang, O. Rouxel, C. R. German & L. S. Mullineaux, 2011. Surface generated mesoscale eddies transport deep sea products from hydrothermal vents. Science 332: 580–583.CrossRefPubMedGoogle Scholar
  2. Aiuppa, A., P. Allard, W. D’Alessandro, A. Michel, F. Parello, M. Treuil & M. Valenza, 2000. Mobility and fluxes of major, minor, and trace metals during basalt weathering and groundwater transport at Mt. Etna volcano (Sicily). Geochimica Cosmochimica Acta 64: 1827–1841.CrossRefGoogle Scholar
  3. Aldhous, P., 2011. Deep sea vents mining operations to begin in 2013. New Scientist 211: 6–9.Google Scholar
  4. Amend, J. P., T. M. McCollom, M. Hentscher & W. Bach, 2011. Catabolic and anabolic energy for chemolithoautotrophs in deep sea hydrothermal systems hosted in different rock types. Geochimica Cosmochimica Acta 75: 5736–5748.CrossRefGoogle Scholar
  5. Arnold, H. E., P. Kerrison & M. Steinke, 2013. Interacting effects of ocean acidification and warming on growth and DMS-production in the haptophyte coccolithophore Emiliania huxleyi. Global Change Biology 19: 1007–1016.CrossRefPubMedGoogle Scholar
  6. Bianchi, C. N., C. Morri, M. Chiantore, M. Montefalcone, V. Parravicini & A. Rovere, 2012. Mediterranean Sea biodiversity between the legacy from the past and a future of change. In: Life in the Mediterranean Sea: a look at habitat changes (N. Stambler, Ed.). Nova Science Publishers, New York: 1–55.Google Scholar
  7. Boatta, F., W. D’Alessandro, A. L. Gagliano, M. Liotta, M. Milazzo, R. Rodolfo-Metalpa, J. M. Hall-Spencer & F. Parello, 2013. Geochemical survey of Levante Bay, Vulcano Island (Italy), a natural laboratory for the study of ocean acidification. Marine Pollution Bulletin 73(2): 485–494.CrossRefPubMedGoogle Scholar
  8. Boutet, I., A. Tanguy, D. LeGuen, P. Piccino, S. Hourdez, P. Legendre & D. Jollivet, 2009. Global depression in gene expression as a response to rapid thermal changes in vent mussels. Proceedings of the Royal Society B 276: 3071–3079.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Campbell, B. J., J. L. Smith, T. E. Hanson, M. G. Klotz, L. Y. Stein, C. K. Lee & S. C. Cary, 2009. Adaptations to Submarine Hydrothermal Environments Exemplified by the Genome of Nautilia profundicola. PLoS Genetics 5(2): e1000362.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Chan, I., L.-C. Tseng, S. Kâ, C.-F. Chang & J.-S. Hwang, 2012. An experimental study of the response of the gorgonian coral Subergorgia suberosa to polluted seawater from a former coastal mining site in Taiwan. Zoological Studies 51(1): 27–37.Google Scholar
  11. Chan, I., J.-J. Hung, S.-H. Peng, L.-C. Tseng, T.-Y. Ho & J.-S. Hwang, 2014. Comparison of metal accumulation in the azooxanthellate scleractinian coral (Tubastraea coccinea) from different polluted environments. Marine Pollution Bulletin 85: 648–658.CrossRefPubMedGoogle Scholar
  12. Chen, C. T. A., B. J. Wang, J. F. Huang, J. Y. Lou, F. W. Kuo, Y. Y. Tu & H. S. Tsai, 2005a. Investigation into extremely acidic hydrothermal fluids off Kueishantao islet, Taiwan. Acta Oceanica Sinica 24: 125–133.Google Scholar
  13. Chen, C. T. A., Z. G. Zeng, F. W. Kuo, T. F. Yang, B. J. Wang & Y. Y. Tu, 2005b. Tide-influenced acidic hydrothermal system offshore NE Taiwan. Chemical Geology 224: 69–81.CrossRefGoogle Scholar
  14. Dahms, H.-U. & J.-S. Hwang, 2013. Mortality in the Ocean – with lessons from Hydrothermal vents off Kueishan tao, NE-Taiwan. Journal of Marine Science and Technology-Taiwan 21(6): 711–715.Google Scholar
  15. Dahms, H.-U., S. Dobretsov & J.-S. Lee, 2011. Effects of UV radiation on marine ectotherms in polar regions. Comparative Biochemistry and Physiology: Part C 153: 363–371.Google Scholar
  16. Dahms, H.-U., L.-C. Tseng & J.-S. Hwang, 2013, Life history of the copepod Paramphiascella sp. affected by hydrothermal vent effluents. Journal of Marine Science and Technology-Taiwan 21 (Suppl.): 297–303.Google Scholar
  17. Dahms, H.-U., L.-C. Tseng & J.-S. Hwang, 2014a. Marine invertebrate larval distribution at the hydrothermal vent site of Kueishan tao. Journal of Marine Science and Technology-Taiwan 22(1): 67–74.Google Scholar
  18. Dahms, H.-U., L.-C. Tseng, D. M.-C. Shim & J.-S. Hwang, 2014b. Hydrothermal vent effluents affect life stages of the copepod Tisbe sp. Journal of Marine Science and Technology-Taiwan 22(1): 82–88.Google Scholar
  19. Dahms, H.-U., D.-J. Huang, S. H. Lee, W.-K. Chen, K. Soong & J.-S. Hwang, 2016. The challenging role of life cycle monitoring – evidence from bisphenol A on the copepod Tigriopus japonicus. Hydrobiologia–Special volume Challenging roles of Aquatic Sciences 784: 81–91.Google Scholar
  20. Dahms, H.-U., L.-C. Tseng & J.-S. Hwang, 2017. Are vent crab behavioral preference adaptations for habitat choice? PLoS ONE 12(9):e0182649.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Dando, P. R., 2010. Biological communities at marine shallow-water vent and seep sites. In Kiel, S. (ed.), The vent and seep biota. Springer Science + Business Media B.V, Dordrecht: 333–378.CrossRefGoogle Scholar
  22. Doney, S. C., V. J. Fabry, R. A. Feely & J. A. Kleypas, 2009. Ocean acidification: the other CO2 problem. Annual Review of Marine Science 1: 169–192.CrossRefPubMedGoogle Scholar
  23. Edmond, J. M., C. Measure, R. E. McDuff, L. H. Chan, R. Collier, B. Grant, L. I. Gordon & J. B. Corliss, 1979. Ridge crest hydrothermal activity and the balances of the major and minor elements in the ocean: The Galapagos data. Earth and Planetary Science Letters 46: 1–18.CrossRefGoogle Scholar
  24. Ericson, J. A., M. A. Ho, A. Miskelly, C. K. King, P. Virtue, B. Tilbrook & M. Byrne, 2012. Combined effects of two ocean change stressors, warming and acidification, on fertilization and early development of the Antarctic echinoid Sterechinus neumayeri. Polar Biology 35: 1027–1034.CrossRefGoogle Scholar
  25. Fabry, V. J., B. A. Seibel, R. A. Feely & J. C. Orr, 2008. Impacts of ocean acidification on marine fauna and ecosystem processes. ICES Journal of Marine Science 65: 414–432.CrossRefGoogle Scholar
  26. Gebruk, A. V., E. C. Southward, H. Kennedy & A. J. Southward, 2000. Food sources, behaviour and distribution of hydrothermal vent shrimps at the Mid-Atlantic Ridge. Journal of the Marine Biological Association of the United Kingdom 80: 485–499.CrossRefGoogle Scholar
  27. Girguis, P. R. & R. W. Lee, 2006. Thermal preference and tolerance of alvinellids. Science 312: 231.CrossRefPubMedGoogle Scholar
  28. Glover, A. G., A. J. Gooday, D. M. Bailey, D. S. M. Billett, P. Chevaldonné, A. Colaço, J. Copley, D. Cuvelier, D. Desbruyères, V. Kalogeropoulou, M. Klages, N. Lampadaraiou, C. Lejeusne, N. C. Mestre, G. L. J. Paterson, T. Perez, H. Ruhl, J. Sarrazin, T. Soltwedel, E. H. Soto, S. Thatje, A. Tselepides, S. Van Gaever & A. Vanreusel, 2010. Temporal change in deep-sea benthic ecosystems: a review of the evidence from recent time-series studies. Advances in Marine Biology 58: 1–95.CrossRefPubMedGoogle Scholar
  29. Hall-Spencer, J. M., R. Rodolfo-Metalap, S. Martin, E. Ransome, M. Fine, S. M. Turner, et al., 2008. Volcanic carbon dioxide vents show ecosystem effects of ocean acidification. Nature 454(7200): 96–99.CrossRefPubMedGoogle Scholar
  30. Hsiao, S. H. & T. H. Fang, 2013. Hg bioaccumulation in marine copepods around hydrothermal vents and the adjacent marine environment in northeastern Taiwan. Marine Pollution Bulletin 74(1): 175–182.CrossRefPubMedGoogle Scholar
  31. Hwang, J. S. & C. S. Lee, 2003. The mystery of underwater world for tourism of Turtle Island, Taiwan, pp 1–103. Northeast Coast National Scenic Area Administration, Tourism Bureau, The Ministry of Transportation, and Communication, Taiwan. (in Chinese)Google Scholar
  32. Hwang, J.-S., H.-U. Dahms, L.-C. Tseng & Q.-C. Chen, 2007. Intrusions of the Kuroshio Current in the northern South China Sea affect copepod assemblages of the Luzon Strait. Journal of Experimental Marine Biology and Ecology 352: 12–27.CrossRefGoogle Scholar
  33. Jeng, M. S., N. K. Ng & P. K. L. Ng, 2004. Feeding behaviour: Hydrothermal vent crabs feast on sea snow. Nature 432: 969.CrossRefPubMedGoogle Scholar
  34. Ka, S. & J.-S. Hwang, 2011. Mesozooplankton distribution and composition on the northeastern coast of Taiwan during autumn: Effects of the Kuroshio current and hydrothermal vents. Zoological Studies 50(2): 155–163.Google Scholar
  35. Kádár, E., V. Costa & M. Segonza, 2007. Trophic influences of metal accumulation in natural pollution laboratories at deep-sea hydrothermal vents of the Mid-Atlantic Ridge. Science of the Total Environment 373: 464–472.CrossRefPubMedGoogle Scholar
  36. Karlen, D. J., R. E. Price, T. Pichler & J. R. Garey, 2010. Changes in benthic macrofauna associated with a shallow-water hydrothermal vent gradient in Papua New Guinea. Pacific Sciences 64: 391–404.CrossRefGoogle Scholar
  37. Kim, J.-H., S.-Y. Jeong, P.-J. Kim, H.-U. Dahms, K.-N. Han, 2017. Bio-effect monitoring of long-term thermal wastes on the oyster, Crassostrea gigas, using heat shock proteins. Marine Pollution Bulletin 119: 359–364.CrossRefPubMedGoogle Scholar
  38. Kuo, J., T. Shibuno, Z. Kanamoto & T. Noro, 2001. Halophilia ovalis (R.Br.) Hook. f. from a submarine hot spring in southern Japan. Aquatic Botany 70: 329–335.CrossRefGoogle Scholar
  39. Li, B., D. Li, W. Jing, J. Fan, H.-U. Dahms, S.C. Li & L. Wang (September 2017-ONLINE) Biogenic selenium and its hepatoprotective activity. Scientific Reports.Google Scholar
  40. Melwani, A. R. & S. L. Kim, 2008. Benthic infaunal distributions in shallow hydrothermal vent sediments. Acta Oecologica 33: 162–175.CrossRefGoogle Scholar
  41. Mora, C., B. Dousset, I. R. Caldwell, F. E. Powell, R. C. Geronimo, C. R. Bielecki, W. W. C. Counsell, B. S. Dietrich, E. T. Johnston, L. V. Louis, M. P. Lucas, M. M. McKenzie, A. G. Shea, H. Tseng, T. W. Giambelluca, L. R. Leon, E. Hawkins & C. Trauernicht, 2017. Global risk of deadly heat. Nature Climate Change 7: 501–506.CrossRefGoogle Scholar
  42. Morri, C., C. N. Bianchi, S. Cocito, A. Peirano, A. M. De Biasi, S. Aliani, M. Pansini, M. Boyer, F. Ferdeghini, M. Pestarino & P. Dando, 1999. Biodiversity of marine sessile epifauna at an Aegean island subject to hydrothermal activity: Milos Eastern Mediterranean Sea. Marine Biology 135(4): 729–739.CrossRefGoogle Scholar
  43. Nielsen, L. T., S. S. Asadzadehb, J. Dölger, J. H. Walther, T. Kiørboe & A. Andersen, 2017. Hydrodynamics of microbial filter feeding. PNAS 114(35): 9373–9378.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Nisbet, E. G. & N. H. Sleep, 2001. The habitat and nature of early life. Nature 409: 1083–1091.CrossRefPubMedGoogle Scholar
  45. Nuzzio, D. B., A. Sen, R. A. Lutz, T. M. Shank & C. R. Fisher, 2012. Chemistry, temperature, and faunal distributions at diffuse-flow hydrothermal vents: comparison of two geologically distinct ridge systems. Oceanography 25: 234–245.CrossRefGoogle Scholar
  46. Peng, S. H., J. J. Hung & J. S. Hwang, 2011. Bioaccumulation of trace metals in the submarine hydrothermal vent crab Xenograpsus testudinatus off Kueishan Island, Taiwan. Marine Pollution Bulletin 63: 396–401.CrossRefPubMedGoogle Scholar
  47. Siebenaller, J. F., 2000. The effects of hydrostatic pressure on signal transduction in brain membranes of deep-sea fishes of the genus Coryphaenoides. Fish Physiology and Biochemistry 23(2): 99–106.CrossRefGoogle Scholar
  48. Silverman, J., B. Lazar, L. Cao, K. Caldeira & J. Erez, 2009. Coral reefs may start dissolving when atmospheric CO2 doubles. Geophysical Research Letters. 36: L05606.CrossRefGoogle Scholar
  49. Smith, F., A. Brown, N. C. Mestre, A. J. Reed & S. Thatje, 2013. Thermal adaptations in deep-sea hydrothermal vent and shallow-water shrimp. Deep-Sea Research II 92: 234–239.CrossRefGoogle Scholar
  50. Tang, K., K. Liu, N. Jiao, Y. Zhang, C.-T. Chen, 2013. Functional metagenomic investigations of microbial communities in a shallow-sea hydrothermal system. PlosONE 8(8): e72958.CrossRefGoogle Scholar
  51. Tarasov, V. G., A. Gebruk, A. Mironov & L. Moskalev, 2005. Deep-sea and upper sublittoral hydrothermal vent communities: two different phenomena? Chemical Geology 224: 5–39.CrossRefGoogle Scholar
  52. Tarasov, V. G., A. V. Gebruk, V. M. Shulkin, G. M. Kamenev, V. I. Fadeev, V. N. Kosmynin, et al., 1999. Effect of shallow-water hydrothermal venting on the biota of Matupi Harbour (Rabaul Caldera, New Britain Island, Papua New Guinea). Continental Shelf Research 19: 79–161.CrossRefGoogle Scholar
  53. Tunnicliffe, V., K. T. Davies, D. A. Butterfield, R. W. Embley, J. M. Rose & W. W. Chadwick Jr., 2009. Survival of mussels in extremely acidic waters on a submarine volcano. Nature—Geoscience 2(5): 344–348.Google Scholar
  54. Van Dover, C. L., 2000. The ecology of deep-sea hydrothermal vents. Princeton University Press, Princeton.Google Scholar
  55. Van Dover, C. L., 2014. Impacts of anthropogenic disturbances at deep-sea hydrothermal vent ecosystems: A review. Marine Environmental Research 102: 59–72.CrossRefPubMedGoogle Scholar
  56. Vizzini, S., R. Di Leonardo, V. Costa, C. D. Tramati, F. Luzzu & A. Mazzola, 2013. Trace element bias in the use of C02 vents as analogues for low pH environments: implications for contamination levels in acidified oceans. Estuarine, Coastal and Shelf Science 134: 19–30.CrossRefGoogle Scholar
  57. Wang, C., M. L. Yang, C. P. Chou, Y. T. Chang & C. S. Lee, 2000. Westward extension of the Okinawa Trough at its western end in the northern Taiwan area: Bathymetric and seismological evidence. Terrestrial, Atmospheric and Oceanic Science 11(2): 459–480.CrossRefGoogle Scholar
  58. Wang, L., M. K. Cheung, H. S. Kwan, J. S. Hwang & C. K. Wong, 2015. Microbial diversity in shallow-water hydrothermal sediments of Kueishan Island, Taiwan as revealed by pyrosequencing. Journal of Basic Microbiology 55(11): 1308–1318.CrossRefPubMedGoogle Scholar
  59. Wood, H. L., J. I. Spicer, D. W. Lowe & S. Widdicombe, 2010. Interaction of ocean acidification and temperature; the high cost of survival in the brittlestar Ophiura ophiura. Marine Biology 157: 2001–2013.CrossRefGoogle Scholar
  60. Zeng, Z. G., C. H. Liu, C.-T. A. Chen, X. B. Yin, D. G. Chen, X. Y. Wang, X. M. Wang & G. L. Zhang, 2007. Origin of a native sulfur chimney in the Kueishantao hydrothermal field, offshore northeast Taiwan. Science in China Series D: Earth Sciences 50: 1746–1753.CrossRefGoogle Scholar
  61. Zeng, Z. G., C.-T. A. Chen, X. B. Yin, X. Y. Zhang, X. Y. Wang, G. L. Zhang, X. M. Wang & D. G. Chen, 2011. Origin of native sulfur ball from the Kueishantao hydrothermal field offshore northeast Taiwan: evidence from trace and rare earth element composition. Journal of Asian Earth Sciences 40: 661–671.CrossRefGoogle Scholar
  62. Zeng, Z. G., X. Y. Wang, C.-T. A. Chen, X. B. Yin, S. Chen, Y. Ma & Y. K. Xiao, 2013. Boron isotope compositions of fluids and plumes from the Kueishantao hydrothermal field off northeastern Taiwan: Implications for fluid origin and hydrothermal processes. Marine Chemistry 157: 59–66.CrossRefGoogle Scholar
  63. Zeppilli, D. & R. Danovaro, 2009. Meiofaunal diversity and assemblage structure in a shallow-water hydrothermal vent in the Pacific Ocean. Aquatic Biology 5: 75–84.CrossRefGoogle Scholar
  64. Zielinski, F. U., H.-H. Gennerich, C. Borowski, F. Wenzhöfer & N. Dubilier, 2011. In situ measurements of hydrogen sulfide, oxygen, and temperature in diffuse fluids of an ultramafic-hosted hydrothermal vent field (Logatchev, 14450 N, Mid-Atlantic Ridge): implications for chemosymbiotic bathymodiolin mussels. Geochemistry Geophysics Geosystems 12: 1–21.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Hans-Uwe Dahms
    • 1
    • 2
  • Nikolaos V. Schizas
    • 3
  • R. Arthur James
    • 4
  • Lan Wang
    • 5
  • Jiang-Shiou Hwang
    • 5
    • 6
  1. 1.Department of Biomedical Science and Environmental BiologyKaohsiung Medical UniversityKaohsiungTaiwan
  2. 2.Research Center for Environmental MedicineKaohsiung Medical UniversityKaohsiungTaiwan
  3. 3.Department of Marine SciencesUniversity of Puerto Rico PRMayagüezUSA
  4. 4.Department of Marine ScienceBharathidasan UniversityTamil NaduIndia
  5. 5.School of Life ScienceShanxi UniversityShanxiChina
  6. 6.Institute of Marine BiologyNational Taiwan Ocean UniversityKeelungTaiwan

Personalised recommendations