Molecular phylogeny of glacial relict species: a case of freshwater Valvatidae molluscs (Mollusca: Gastropoda) in North and East Asia

  • Takumi Saito
  • Larisa Prozorova
  • Tatiana Sitnikova
  • Purevdorj Surenkhorloo
  • Takahiro Hirano
  • Yuta Morii
  • Satoshi Chiba
Primary Research Paper
  • 53 Downloads

Abstract

The study of glacial relict species has been focused on understanding how the biogeographic patterns of species have developed. A number of studies using phylogenetic and population genetics approaches have been conducted for terrestrial glacial relict species, and the mechanisms of their formation have been elucidated. On the other hand, less focus has been placed on glacial relict species inhabiting freshwater systems. In particular, stable lakes can serve as refugia during a glacial period, but research studies on freshwater relict species inhabiting lakes have not been well conducted. In order to clarify the mechanism of the glacial relict species in freshwater, we conducted a molecular phylogeny analysis, divergence time estimation, and a biogeographic reconstruction on freshwater Valvatidae molluscs, which have been considered as a glacial relict in the Japanese Archipelago. Our study shows that the valvatid fauna in the Japanese Archipelago was produced by multiple dispersal events from the Asian continent and by vicariance events during the period of the Pliocene–Quaternary glaciation. It includes multiple relict species that survived interglacial periods in different lakes. These findings suggest that the lakes can serve as refugia not only during glacial periods, but also during interglacial periods.

Keywords

Japan Lake Phylogeography Refugia 

Notes

Acknowledgements

We are thankful to H. Fukuda for providing samples information. We also thank T. Shimada, J.U. Otani, Y. Murai, K. Kawabe, T. Haga, Omachi City Cultural Property Center, and Katata Fishermen’s Cooperative for collecting materials. Finally, we thank two anonymous referees for providing us with helpful comments on this manuscript. This study was funded in part by Japan Society for the Promotion of Science Research Fellow Grant Number 16J04692.

Supplementary material

10750_2018_3595_MOESM1_ESM.pdf (2 kb)
Supplementary material 1 (PDF 2 kb)
10750_2018_3595_MOESM2_ESM.pdf (3 kb)
Supplementary material 2 (PDF 2 kb)
10750_2018_3595_MOESM3_ESM.pdf (139 kb)
Supplementary material 3 (PDF 139 kb)
10750_2018_3595_MOESM4_ESM.pdf (125 kb)
Supplementary material 4 (PDF 125 kb)
10750_2018_3595_MOESM5_ESM.pdf (127 kb)
Supplementary material 5 (PDF 126 kb)

References

  1. Baba, Y., Y. Fujimaki, R. Yoshii & H. Koike, 2001. Genetic variability in the mitochondrial control region of the Japanese rock ptarmigan Lagopus mutus japonicus. Japanese Journal of Ornithology 50: 53–64.CrossRefGoogle Scholar
  2. Baba, Y., Y. Fujimaki, S. Klaus, O. Butorina, S. Drovetskii & H. Koike, 2002. Molecular population phylogeny of the hazel grouse Bonasa bonasia in East Asia inferred from mitochondrial control-region sequences. Wildlife Biology 8: 251–259.Google Scholar
  3. Beaulieu, J. M., D. C. Tank & M. J. Donoghue, 2013. A Southern Hemisphere origin for campanulid angiosperms, with traces of the break-up of Gondwana. BMC Evolutionary Biology 13: 80.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bolotov, I. N., O. V. Aksenova, Y. V. Bespalaya, M. Y. Gofarov, A. V. Kondakov, I. S. Paltser, A. Stefansson, O. V. Travina & M. V. Vinarski, 2017. Origin of a divergent mtDNA lineage of a freshwater snail species, Radix balthica, in Iceland: cryptic glacial refugia or a postglacial founder event? Hydrobiologia 787: 73–98.CrossRefGoogle Scholar
  5. Bouckaert, R., J. Heled, D. Kühnert, T. G. Vaughan, C. H. Wu, D. Xie, M. A. Suchard, A. Rambaut & A. J. Drummond, 2014. BEAST2: a software platform for Bayesian evolutionary analysis. PLoS Computational Biology 10: e1003537.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Capella-Gutiérrez, S., J. M. Silla-Martínez & T. Gabaldón, 2009. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25: 1972–1973.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Clewing, C., P. V. von Oheimb, M. Vinarski, T. Wilke & C. Albrecht, 2014. Freshwater mollusc diversity at the roof of the world: phylogenetic and biogeographical affinities of Tibetan Plateau Valvata. Journal of Molluscan Studies 80: 452–455.CrossRefGoogle Scholar
  8. Coles, B. & B. Colville, 1980. A glacial relict mollusc. Nature 286: 761.CrossRefGoogle Scholar
  9. Dooh, R. T., S. J. Adamowicz & P. D. H. Hebert, 2006. Comparative phylogeography of two North American ‘glacial relict’ crustaceans. Molecular Ecology 15: 4459–4475.CrossRefPubMedGoogle Scholar
  10. Edgar, R. C., 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32: 1792–1797.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Folmer, O., M. Black, W. Hoeh, R. A. Lutz & R. Vrijenhoek, 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3: 294–2998.PubMedGoogle Scholar
  12. Fujii, N. & K. Senni, 2006. Phylogeography of Japanese alpine plants: biogeographic importance of alpine region of central Honshu in Japan. Taxon 55: 43–52.CrossRefGoogle Scholar
  13. Fujii, N., K. Ueda, Y. Watano & T. Shimizu, 1997. Intraspecific sequence variation of chloroplast DNA in Pedicularis chamissonis Steven (Scrophulariaceae) and geographic structuring of the Japanese ‘Alpine’ plants. Journal of Plant Research 110: 195–207.CrossRefGoogle Scholar
  14. Fujii, N., K. Ueda, Y. Watano & T. Shimizu, 1999. Further analysis of intraspecific sequence variation of chloroplast DNA in Primula cuneifolia Ledeb. (Primulaceae): implication for biogeography of the Japanese alpine flora. Journal of Plant Research 112: 87–95.CrossRefGoogle Scholar
  15. Fujita, T. & T. Habe, 1991. Cincinna kizakikoensis n. sp. of the Family Valvatidae from Lakes Kizaki and Nakatsuna, Nagano Prefecture, Japan. Venus 50: 23–26.Google Scholar
  16. Glöer, P., 2002. Süßwassergastropoden Nord- und Mitteleuropas. Bestimmungsschluüssel, Lebensweise, Verbreitung. ConchBooks, Hackenheim.Google Scholar
  17. Habe, T., 1990. The list of Japanese freshwater mollusks:1. Hitachiobi 54: 3–6.Google Scholar
  18. Habe, T. & A. Kawakami, 1982. Glacial relic species, Cincinna piscinalis japonica (Martens). Chiribotan 13: 64–65.Google Scholar
  19. Habel, J. C., T. Assmann, T. Schmitt & J. C. Avise, 2010a. Relict species: from past to future. In Habel, J. C. & T. Assmann (eds), Relict Species Phylogeography and Conservation Biology. Springer, Berlin: 1–5.Google Scholar
  20. Habel, J. C., C. Drees, T. Schmitt & T. Assmann, 2010b. Review refugial areas and postglacial colonizations in the Western Palearctic. In Habel, J. C. & T. Assmann (eds), Relict Species Phylogeography and Conservation Biology. Springer, Berlin: 189–197.Google Scholar
  21. Habel, J. C., T. Schmitt & T. Assmann, 2010c. Relict species research: some concluding remarks. In Habel, J. C. & T. Assmann (eds), Relict Species Phylogeography and Conservation Biology. Springer, Berlin: 441–442.Google Scholar
  22. Haszprunar, G., 2014. A nomenclator of extant and fossil taxa of the Valvatidae (Gastropoda, Ectobranchia). ZooKeys 377: 1–172.CrossRefGoogle Scholar
  23. Hauswald, A. K., C. Albrecht & T. Wilke, 2008. Testing two contrasting evolutionary patterns in ancient lakes: species flock versus species scatter in valvatid gastropods of Lake Ohrid. Hydrobiologia 615: 169–179.CrossRefGoogle Scholar
  24. Hewitt, G. M., 1996. Some genetic consequences of ice-ages, and their role in divergence and speciation. Biological Journal of the Linnean Society 58: 247–276.CrossRefGoogle Scholar
  25. Hewitt, G. M., 2004. Genetic consequences of climatic oscillations in the Quaternary. Philosophical Transactions of the Royal Society B 359: 183–195.CrossRefGoogle Scholar
  26. Hultén, E. & M. Fries, 1986. Atlas of North European Vascular Plants North of the Tropic of Cancer 1–3. Koeltz Scientific Books, Königstein.Google Scholar
  27. Hyodo, M. & I. Kitaba, 2012. Late Pliocene magneto- and climatostratigraphic evolution toward the onset of the Quaternary in East Asia. The Journal of the Geological Society of Japan 118: 74–86.CrossRefGoogle Scholar
  28. Ikeda, H. & H. Setoguchi, 2007. Phylogeography and refugia of the Japanese endemic alpine plant, Phyllodoce nipponica Makino (Ericaceae). Journal of Biogeography 34: 169–176.CrossRefGoogle Scholar
  29. Ikeda, H. & H. Setoguchi, 2013. A multilocus sequencing approach reveals the cryptic phylogeographical history of Phyllodoce nipponica Makino (Ericaceae). Biological Journal of the Linnean Society 110: 214–226.CrossRefGoogle Scholar
  30. Ikeda, H., K. Senni, N. Fujii & H. Setoguchi, 2006. Refugia of Potentilla matsumurae (Rosaceae) located at high mountains in the Japanese Archipelago. Molecular Ecology 15: 3731–3740.CrossRefPubMedGoogle Scholar
  31. Ikeda, H., K. Senni, N. Fujii & H. Setoguchi, 2008. Survival and genetic divergence of an arctic-alpine plant, Diapensia lapponica subsp. obovata (Fr. Schm.) Hultén (Diapensiaceae), in the high mountains of central Japan during climatic oscillations. Plant Systematics and Evolution 272: 197–210.CrossRefGoogle Scholar
  32. Ikeda, H., K. Senni, N. Fujii & H. Setoguchi, 2009. High mountains of the Japanese Archipelago as refugia for arctic-alpine plants: phylogeography of Loiseleuria procumbens (L.) Desvaux (Ericaceae). Biological Journal of the Linnean Society 97: 403–412.CrossRefGoogle Scholar
  33. Ikeda, H., T. Carlsen, N. Fujii, C. Brochmann & H. Setoguchi, 2012. Pleistocene climatic oscillations and the speciation history of an alpine endemic and a widespread arctic-alpine plant. New Phytologist 194: 583–594.CrossRefPubMedGoogle Scholar
  34. Ikeda, H., V. Yakubov, V. Barkalov & H. Setoguchi, 2014. Molecular evidence for ancient relicts of arctic-alpine plants in East Asia. New Phytologist 203: 980–988.CrossRefPubMedGoogle Scholar
  35. Ito, T., A. Ohtaka, R. Ueno, Y. Kuwahara, H. Ubukata, S. Hori, T. Itoh, S. Hiruta, K. Tomikawa, N. Matsumoto, S. Kitaoka, S. Togashi, I. Wakana & A. Ohkawa, 2005. Aquatic macroinvertebrate fauna in Lake Takkobu, Kushiro Marsh, northern Japan. Japanese Journal of Limnology 66: 117–128.CrossRefGoogle Scholar
  36. Jobb, G., 2008. TREEFINDER version of October 2008 [available on internet at http://www.treefinder.de].
  37. Kawabe, K., T. Sonohara, T. Yoshida & I. Aihara, 2006. Cincinna japonica (Gastropoda: Valvatidae) collected from a water reservoir on the Sagami River, Kanagawa Prefecture, Japan. Chiribotan 36: 116–118.Google Scholar
  38. Kihira, H., O. Masuda & R. Uchiyama, 2009. Freshwater mollusks of Japan 1: freshwater mollusks of Lake Biwa and Yodogawa River. In Pisces, Revised Edition, Kanagawa.Google Scholar
  39. Kitamura, A. & K. Kimoto, 2004. Reconstruction of the Southern Channel of the Japan Sea at 3.9–1.0 Ma. The Quaternary Research 43: 417–434.CrossRefGoogle Scholar
  40. Kitamura, A. & K. Kimoto, 2006. History of the inflow of the warm Tsushima Current into the Sea of Japan between 3.5 and 0.8 Ma. Palaeogeography, Palaeoclimatology, Palaeoecology 236: 355–366.CrossRefGoogle Scholar
  41. Kobayashi, M., 2008. Eruption history of the Hakone Central Cone Volcanoes, and geographical development closely related to eruptive activity in the Hakone Caldera. Research Report of Kanagawa Prefectural Museum Natural History 13: 43–60.Google Scholar
  42. Kontula, T. & R. Väinölä, 2003. Relationships of Palearctic and Nearctic ‘glacial relict’ Myoxocephalus sculpins from mitochondrial DNA data. Molecular Ecology 12: 3179–3184.CrossRefPubMedGoogle Scholar
  43. Liang, Y., D. He, Y. Jia, H. Sun & Y. Chen, 2017. Phylogeographic studies of schizothoracine fishes on the central Qinghai–Tibet Plateau reveal the highest known glacial microrefugia. Scientific Reports 7: 10983.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Lisiecki, L. E. & M. E. Raymo, 2007. Plio–Pleistocene climate evolution: trends and transitions in glacial cycle dynamics. Quaternary Science Reviews 26: 56–69.CrossRefGoogle Scholar
  45. Lomolino, M. V., B. R. Riddle & J. H. Brown, 2006. Biogeography. Sinauer, Sunderland.Google Scholar
  46. Martens, K., 1997. Speciation in ancient lakes. Trends in Ecology and Evolution 12: 177–182.CrossRefPubMedGoogle Scholar
  47. Masuda, O. & R. Uchiyama, 2004. Freshwater mollusks of Japan 2: freshwater mollusks of Japan. Including brackish water species. In Pisces, Tokyo.Google Scholar
  48. Miller, M. P., D. E. Weigel & K. E. Mock, 2006. Patterns of genetic structure in the endangered aquatic gastropod Valvata utahensis (Mollusca: Valvatidae) at small and large spatial scales. Freshwater Biology 51: 2362–2375.CrossRefGoogle Scholar
  49. Miyadi, D., 1935. Descriptions of three new subspecies of Valvata from Nippon. Venus 5: 59–62, Pl. 3.Google Scholar
  50. Nakatani, T., S. Usami & T. Itoh, 2007a. Phylogeographic history of the Japanese Alpine Ringlet Erebia niphonica (Lepidoptera, Nymphalidae): fragmentation and secondary contact. Transactions of the Lepidopterological Society of Japan 58: 253–275.Google Scholar
  51. Nakatani, T., S. Usami & T. Itoh, 2007b. Molecular phylogenetic analysis of the Erebia aethiops groups (Lepidoptera, Nymphalidae). Transactions of the Lepidopterological Society of Japan 58: 387–404.Google Scholar
  52. Nakatani, T., S. Usami & T. Itoh, 2012. Historic cycles of fragmentation and expansion in the Alpine butterfly Erebia ligea (Lepidoptera, Nymphalidae) on the Japanese Archipelago, inferred from mitochondrial DNA. Lepidoptera Science 63: 204–216.Google Scholar
  53. Nitobe, K., 1975. The geomorphic history of Lake Ogawara. Annals of the Tohoku Geographical Assosiation 27: 25–35.CrossRefGoogle Scholar
  54. Nixon, K. C., 1999. The parsimony ratchet: a new method for rapid parsimony analysis. Cladistics 15: 407–414.CrossRefGoogle Scholar
  55. Ohdachi, S., N. E. Dokuchaev, M. Hasegawa & R. Masuda, 2001. Intraspecific phylogeny and geographical variation of six species of northeastern Asiatic Sorex shrews based on the mitochondrial cytochrome b sequences. Molecular Ecology 10: 2199–2213.CrossRefPubMedGoogle Scholar
  56. Ohyagi, A., 2010a. Valvata hokkaidoensis. In Aomori Prefecture Red Data Book Revision and Review Board and Nature Conservation Division in Aomori Prefecture (eds), The Rare Wildlife in Aomori Prefecture – Aomori Prefecture Red Data Book (2010 Revised Edition). Aomori Prefecture, Aomori: 311.Google Scholar
  57. Ohyagi, A. 2010b. Cincinna japonica. In Aomori Prefecture Red Data Book Revision and Review Board and Nature Conservation Division in Aomori Prefecture (eds), The Rare Wildlife in Aomori Prefecture – Aomori Prefecture Red Data Book (2010 Revised Edition). Aomori Prefecture, Aomori: 311.Google Scholar
  58. Ono, Y., 1990. The Northern Landbridge of Japan. The Quaternary Research 20: 183–192.CrossRefGoogle Scholar
  59. Palumbi, S. R., A. Martin, S. Romano, W. O. Mcmillan, L. Stice & G. Grabowski, 1991. The Simple Fool’s Guide to PCR. University of Hawaii Press, Honolulu.Google Scholar
  60. Park, J. L., Ó. Foighil & D., 2000. Sphaeriid and Corbiculid clams represent separate heterodont bivalve radiations into freshwater environments. Molecular Phylogenetics and Evolution 14: 75–88.CrossRefPubMedGoogle Scholar
  61. Preston, H. B. 1916. Description of new freshwater shells from Japan. The Annals and Magazine of Natural History; Zoology, Botany, and Geology Being a Continuation of the Annals Combined with Loudon and Charlesworth’s Magazine of Natural History 8th Series 17: 159–163, Pl. 9.Google Scholar
  62. Prozorova, L. A., T. Ya. Sitnikova, M. O. Zasypkina, P. O. Matafonov & A. Dulmaa, 2009. Freshwater Gastropoda in the Basin of Lake Baikal and adjacent territories. In Timoshkin, O. A. (ed.), Index of Animal Species Inhabiting Lake Baikal and Its Catchment Area. Basins and Channels in the South of East Siberia and North Mongolia, Book 1, Part 1, Vol. 2. Nauka, Novosibirsk: 170–188.Google Scholar
  63. Quante, M., 2010. The changing climate: past, present, future. In Habel, J. C. & T. Assmann (eds), Relict Species Phylogeography and Conservation Biology. Springer, Berlin: 9–56.Google Scholar
  64. Rambaut, A., A. J. Drummond & M. Suchard, 2013. Tracer v1.6 [available on internet at http://tree.bio.ed.ac.uk/software/tracer/].
  65. Ravelo, A. C., D. H. Andreasen, M. Lyle, A. O. Lyle & M. W. Wara, 2004. Regional climate shifts caused by gradual global cooling in the Pliocene epoch. Nature 429: 263–267.CrossRefPubMedGoogle Scholar
  66. Ray, N. & J. M. Adams, 2001. A GIS-based vegetation map of the world at the Last Glacial Maximum (25,000–15,000 BP). Internet Archaeology 11 [available on internet at http://intarch.ac.uk/journal/issue11/bristow_index.html].
  67. Ronquist, F. & J. P. Huelsenbeck, 2003. MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572–1574.CrossRefPubMedGoogle Scholar
  68. Schmitt, T., 2007. Molecular biogeography of Europe: Pleistocene cycles and postglacial trends. Frontiers in Zoology 4: 11.CrossRefPubMedPubMedCentralGoogle Scholar
  69. Schmitt, T., 2009. Biogeographical and evolutionary importance of the European high mountain systems. Frontiers in Zoology 6: 9.CrossRefPubMedPubMedCentralGoogle Scholar
  70. Schmitt, T. & G. M. Hewitt, 2006. Molecular biogeography of the arctic-alpine disjunct burnet moth species Zygaena exulans (Zygaenidae, Lepidoptera) in the Pyrenees and Alps. Journal of Biogeography 31: 885–893.CrossRefGoogle Scholar
  71. Schmitt, T., G. M. Hewitt & P. Müller, 2006. Disjunct distributions during glacial and interglacial periods in mountain butterflies: Erebia epiphron as an example. Journal of Evolutionary Biology 19: 108–113.CrossRefPubMedGoogle Scholar
  72. Schmitt, T., C. Muster & P. Schönswetter, 2010. Are disjunct alpine and arctic-alpine animal and plant species in the western palearctic really “Relics of a cold past”? In Habel, J.C. & T. Assmann (eds), Relict Species Phylogeography and Conservation Biology. Springer, Berlin: 239–252.Google Scholar
  73. Schönswetter, P., A. Tribsch, G. M. Schneeweiss & H. Niklfeld, 2003. Disjunctions in relict alpine plants: phylogeography of Androsace brevis and A. wulfeniana (Primulaceae). Botanical Journal of the Linnean Society 141: 437–446.CrossRefGoogle Scholar
  74. Senni, K., N. Fujii, H. Takahashi, T. Sugawara & M. Wakabayashi, 2005. Intraspecific chloroplast DNA variation of the alpine plants in Japan. Acta Phytotaxonomica et Geobotanica 56: 265–275.Google Scholar
  75. Sheldon, T. A., N. E. Mandrak & N. R. Lovejoy, 2008. Biogeography of the deepwater sculpin (Myoxocephalus thompsonii), a Nearctic glacial relict. Canadian Journal of Zoology 86: 108–115.CrossRefGoogle Scholar
  76. Skrede, I., P. B. Eidesen, R. P. Portela & C. Brochmann, 2006. Refugia, differentiation and postglacial migration in arctic-alpine Eurasia, exemplified by the mountain avens (Dryas octopetala L.). Molecular Ecology 15: 1827–1840.CrossRefPubMedGoogle Scholar
  77. Sokolov, P. E., 2000. An improved method for DNA isolation from mucopolysaccharide-rich molluscan tissues. Journal of Molluscan Studies 66: 573–575.CrossRefGoogle Scholar
  78. Sonnenberg, R., A. W. Notle & D. Tautz, 2007. An evaluation of LSU rDNA D1-D2 sequences for their use in species identification. Frontiers in Zoology 4: 6.CrossRefPubMedPubMedCentralGoogle Scholar
  79. Starobogatov, Ya. I., L. A. Prozorova, V. V. Bogatov & E. M. Sayenko, 2004. Molluscs. In Bogatov, V. V. & S. J. Tsalolikhin (eds), Key to Freshwater Invertebrates of Russia and adjacent lands, Vol. 6., Molluscus, Polychaetes, Nemerteans Nauka, St. Petersburg: 10–491.Google Scholar
  80. Strong, E. E., O. Gargominy, W. F. Ponder & P. Bouchet, 2008. Global diversity of gastropods (Gastropoda; Mollusca) in freshwater. Hydrobiologia 595: 149–166.CrossRefGoogle Scholar
  81. Tanabe, A. S., 2011. Kakusan4 and Aminosan: two programs for comparing nonpartitioned, proportional and separate models for combined molecular phylogenetic analyses of multilocus sequence data. Molecular Ecology Resources 11: 914–921.CrossRefPubMedGoogle Scholar
  82. Tanabe, A. S., 2012. Phylogears version 2.2.2012.02.13 [available on internet at http://www.fifthdimension.jp/].
  83. Väinölä, R., J. K. Vainio & J. U. Palo, 2001. Phylogeography of “glacial relict” Gammaracanthus (Crustacea, Amphipoda) from boreal lakes and the Caspian and White Seas. Canadian Journal of Fisheries and Aquatic Science 58: 2247–2257.CrossRefGoogle Scholar
  84. Varga, Z. S. & T. Schmitt, 2008. Types of oreal and oreotundral disjunctions in the western Palearctic. Biological Journal of the Linnean Society 93: 415–430.CrossRefGoogle Scholar
  85. Vinarski, M. & Y. Kantor, 2016. Analytical Catalogue of Fresh and Brackish Water Molluscs of Russia and Adjacent Countries. KMK Scientific Press, Moscow.Google Scholar
  86. von Martens, E., 1877. Übersicht über die von Hilgendorf und Dönitz in Japan gesammelten Binnenmollusken. Sitzungsberichte der Gesellschaft natur- forschender Freunde zu Berlin 1877: 97–123.Google Scholar
  87. Vos, R. A., 2003. Accelerated likelihood surface exploration: the likelihood ratchet. Systematic Biology 52: 368–373.CrossRefPubMedGoogle Scholar
  88. Wilke, T., R. Schultheiß & C. Albrecht, 2009. As time goes by: a simple fool’s guide to molecular clock approaches in invertebrates. American Malacological Bulletin 27: 25–45.CrossRefGoogle Scholar
  89. Xu, S., P. D. N. Hebert, A. A. Kotov & M. E. Cristescu, 2009. The noncosmopolitanism paradigm of freshwater zooplankton: insights from the global phylogeography of the predatory cladoceran Polyphemus pediculus (Linnaeus, 1761) (Crustacea, Onychopoda). Molecular Ecology 18: 5161–5179.CrossRefPubMedGoogle Scholar
  90. Yu, Y., A. J. Harris & X. J. He, 2010. S-DIVA (statistical dispersal–vicariance analysis): a tool for inferring biogeographic histories. Molecular Phylogenetics and Evolution 56: 848–850.CrossRefPubMedGoogle Scholar
  91. Yu, Y., A. J. Harris, C. Blair & X. He, 2015. RASP (Reconstruct Ancestral State in Phylogenies): a tool for historical biogeography. Molecular Phylogenetics and Evolution 87: 46–49.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Graduate School of Life ScienceTohoku UniversitySendaiJapan
  2. 2.Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern BranchRussian Academy of SciencesVladivostokRussia
  3. 3.Limnological InstituteSiberian Branch Russian Academy of SciencesIrkutskRussia
  4. 4.Mongolian Benthological SocietyUlaanbaatarMongolia
  5. 5.Center for Northeast Asian StudiesTohoku UniversitySendaiJapan
  6. 6.Department of Forest Science, Graduate School of AgricultureHokkaido UniversityHokkaidoJapan

Personalised recommendations