Advertisement

Management of soil thresholds for seedling emergence to re-establish plant species on bare flats in coastal salt marshes

  • Tian Xie
  • Baoshan Cui
  • Shanze Li
  • Shuyan Zhang
COASTAL WETLANDS

Abstract

In attempts to mitigate habitat degradation, coastal restoration practices have increasingly been developed. Many restoration practices, such as the introduction of freshwater or seawater, depend on improving the physical conditions in the degraded coastal salt marshes. The effectiveness of restoration practice is the most important focus of coastal wetland managers and ecologists. Here, we explored the effectiveness of irrigation with either freshwater or seawater in achieving re-vegetation on degraded bare flats in the Yellow River Delta through a controlled field experiment and greenhouse experiments. Our results showed that the re-establishment of plant seedlings could occur on bare flats when the two essential thresholds are exceeded. Seawater irrigation was less effective than freshwater because of the failure of the former to meet the salinity threshold for seed germination. It was harder to re-establish seedlings on the bare flats in the supratidal uplands, compared to bare flats in the middle and high marsh, because of the initial high soil salinity and low moisture content, which exceeded the tolerance thresholds of the seeds of several salt marsh species. Information on soil factor thresholds can predict the effectiveness of restoration efforts, an achievement which is instructive for future restoration efforts on bare flats.

Keywords

Ecological restoration Seedling establishment Soil salinity Soil moisture content Yellow River Delta 

Notes

Acknowledgements

The study was supported financially by Key Project of National Natural Science Foundation of China (51639001), Fund for Innovative Research Group of the National Natural Science Foundation of China (51721093), and National Key Basic Research Program of China (2013CB430406).

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interest regarding publication of this paper.

References

  1. Amen, R. D., G. E. Carter & R. J. Kelly, 1970. Nature of seed dormancy and germination in salt marsh grass Distichlis Spicata. New Phytologist 69: 1005–1013.CrossRefGoogle Scholar
  2. Armitage, A. R., C. K. Ho, E. N. Madrid, M. T. Bell & A. Quigg, 2014. The influence of habitat construction technique on the ecological characteristics of a restored brackish marsh. Ecological Engineering 62: 33–42.CrossRefGoogle Scholar
  3. Balke, T., T. J. Bouma, E. M. Horstman, E. L. Webb, P. L. A. Erftemeijer & P. M. J. Herman, 2011. Windows of opportunity: thresholds to mangrove seedling establishment on tidal flats. Marine Ecology Progress Series 440: 1–9.CrossRefGoogle Scholar
  4. Balke, T., T. J. Bouma, P. M. J. Herman, E. M. Horstman, C. Sudtongkong & E. L. Webb, 2013. Cross-shore gradients of physical disturbance in mangroves: implications for seedling establishment. Biogeosciences 10: 5411–5419.CrossRefGoogle Scholar
  5. Balke, T., P. M. J. Herman & T. J. Bouma, 2014. Critical transitions in disturbance-driven ecosystems: identifying Windows of Opportunity for recovery. Journal of Ecology 102: 700–708.CrossRefGoogle Scholar
  6. Barbier, E. B., E. W. Koch, B. R. Silliman, S. D. Hacker, E. Wolanski, J. Primavera, E. F. Granek, S. Polasky, S. Aswani, L. A. Cramer, D. M. Stoms, C. J. Kennedy, D. Bael, C. V. Kappel, G. M. E. Perillo & D. J. Reed, 2008. Coastal ecosystem-based management with nonlinear ecological functions and values. Science 319: 321–323.CrossRefPubMedGoogle Scholar
  7. Benayas, J. M. R., A. C. Newton, A. Diaz & J. M. Bullock, 2009. Enhancement of biodiversity and ecosystem services by ecological restoration: a meta-analysis. Science 325: 1121–1124.CrossRefGoogle Scholar
  8. Bestelmeyer, B. T., M. C. Duniway, D. K. James, L. M. Burkett & K. M. Havstad, 2013. A test of critical thresholds and their indicators in a desertification-prone ecosystem: more resilience than we thought. Ecology Letters 16: 339–345.CrossRefPubMedGoogle Scholar
  9. Borsje, B. W., B. K. van Wesenbeeck, F. Dekker, P. Paalvast, T. J. Bouma, M. M. van Katwijk & M. B. de Vries, 2011. How ecological engineering can serve in coastal protection. Ecological Engineering 37: 113–122.CrossRefGoogle Scholar
  10. Clark, C. J., J. R. Poulsen, D. J. Levey & C. W. Osenberg, 2007. Are plant populations seed limited? A critique and meta-analysis of seed addition experiments. American Naturalist 170: 128–142.PubMedGoogle Scholar
  11. Cui, B. S., Q. C. Yang, Z. F. Yang & K. J. Zhang, 2009. Evaluating the ecological performance of wetland restoration in the Yellow River Delta, China. Ecological Engineering 35: 1090–1103.CrossRefGoogle Scholar
  12. Cui, B. S., Q. A. He & Y. A. An, 2011. Community structure and abiotic determinants of salt marsh plant zonation vary across topographic gradients. Estuaries and Coasts 34: 459–469.CrossRefGoogle Scholar
  13. Dahm, C. N., K. W. Cummins, H. M. Valett & R. L. Coleman, 1995. An ecosystem view of the restoration of the Kissimmee River. Restoration Ecology 3: 225–238.CrossRefGoogle Scholar
  14. Davy, A. J., M. J. H. Brown, H. L. Mossman & A. Grant, 2011. Colonization of a newly developing salt marsh: disentangling independent effects of elevation and redox potential on halophytes. Journal of Ecology 99: 1350–1357.CrossRefGoogle Scholar
  15. Day, J., R. Hunter, R. F. Keim, R. DeLaune, G. Shaffer, E. Evers, D. Reed, C. Brantley, P. Kemp, J. Day & M. Hunter, 2012. Ecological response of forested wetlands with and without Large-Scale Mississippi River input: implications for management. Ecological Engineering 46: 57–67.CrossRefGoogle Scholar
  16. Duke, N. C., J. O. Meynecke, S. Dittmann, A. M. Ellison, K. Anger, U. Berger, S. Cannicci, K. Diele, K. C. Ewel, C. D. Field, N. Koedam, S. Y. Lee, C. Marchand, I. Nordhaus & F. Dahdouh-Guebas, 2007. A world without mangroves? Science 317: 41–42.CrossRefPubMedGoogle Scholar
  17. Erfanzadeh, R., F. Hendrickx, J. P. Maelfait & M. Hoffmann, 2010. The effect of successional stage and salinity on the vertical distribution of seeds in salt marsh soils. Flora 205: 442–448.CrossRefGoogle Scholar
  18. Fennell, M., T. Gallagher, L. L. Vintro & B. Osborne, 2014. Using soil seed banks to assess temporal patterns of genetic variation in invasive plant populations. Ecology and Evolution 4: 1648–1658.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Friess, D. A., K. W. Krauss, E. M. Horstman, T. Balke, T. J. Bouma, D. Galli & E. L. Webb, 2012. Are all intertidal wetlands naturally created equal? Bottlenecks, thresholds and knowledge gaps to mangrove and saltmarsh ecosystems. Biological Reviews 87: 346–366.CrossRefPubMedGoogle Scholar
  20. Handa, I. T. & R. L. Jefferies, 2000. Assisted revegetation trials in degraded salt-marshes. Journal of Applied Ecology 37: 944–958.CrossRefGoogle Scholar
  21. He, Q., B. S. Cui, M. D. Bertness & Y. An, 2012. Testing the importance of plant strategies on facilitation using congeners in a coastal community. Ecology 93: 2023–2029.CrossRefPubMedGoogle Scholar
  22. He, Q., A. H. Altieri & B. S. Cui, 2015. Herbivory drives zonation of stress-tolerant marsh plants. Ecology 96: 1318–1328.CrossRefPubMedGoogle Scholar
  23. He, Q., B. R. Silliman, Z. Z. Liu & B. S. Cui, 2017. Natural enemies govern ecosystem resilience in the face of extreme droughts. Ecology Letters 20: 194–201.CrossRefPubMedGoogle Scholar
  24. Hu, Z., J. van Belzen, D. van der Wal, T. Balke, Z. B. Wang, M. Stive & T. J. Bouma, 2015. Windows of opportunity for salt marsh vegetation establishment on bare tidal flats: the importance of temporal and spatial variability in hydrodynamic forcing. Journal of Geophysical Research-Biogeosciences 120: 1450–1469.CrossRefGoogle Scholar
  25. Kefu, Z., F. Hai, Z. San & S. Jie, 2003. Study on the salt and drought tolerance of Suaeda salsa and Kalanchoe claigremontiana under iso-osmotic salt and water stress. Plant Science 165: 837–844.CrossRefGoogle Scholar
  26. Li, Y. Y., S. K. Dong, L. Wen, X. X. Wang & Y. Wu, 2012. Soil seed banks in degraded and revegetated grasslands in the alpine region of the Qinghai-Tibetan Plateau. Ecological Engineering 49: 77–83.CrossRefGoogle Scholar
  27. Li, Z. J., W. Q. Wang & Y. H. Zhang, 2014. Recruitment and herbivory affect spread of invasive Spartina alterniflora in China. Ecology 95: 1972–1980.CrossRefPubMedGoogle Scholar
  28. Li, S. Z., B. S. Cui, T. Xie, X. J. Shao & M. L. Zhang, 2016a. Consequences and implications of anthropogenic desalination of salt marshes on macrobenthos. Clean-Soil Air Water 44: 8–15.CrossRefGoogle Scholar
  29. Li, S. Z., B. S. Cui, T. Xie & K. J. Zhang, 2016b. Diversity pattern of macrobenthos associated with different stages of wetland restoration in the Yellow River Delta. Wetlands 36: S57–S67.CrossRefGoogle Scholar
  30. Liu, W. W., K. Maung-Douglass, D. R. Strong, S. C. Pennings & Y. H. Zhang, 2016. Geographical variation in vegetative growth and sexual reproduction of the invasive Spartina alterniflora in China. Journal of Ecology 104: 173–181.CrossRefGoogle Scholar
  31. Martin, K. L. & L. K. Kirkman, 2009. Management of ecological thresholds to re-establish disturbance-maintained herbaceous wetlands of the south-eastern USA. Journal of Applied Ecology 46: 906–914.CrossRefGoogle Scholar
  32. Moffett, K. B., D. A. Robinson & S. M. Gorelick, 2010. Relationship of salt marsh vegetation zonation to spatial patterns in soil moisture, salinity, and topography. Ecosystems 13: 1287–1302.CrossRefGoogle Scholar
  33. Munns, R., 2002. Comparative physiology of salt and water stress. Plant Cell and Environment 25: 239–250.CrossRefGoogle Scholar
  34. Munns, R. & M. Tester, 2008. Mechanisms of salinity tolerance. Annual Review of Plant Biology 59: 651–681.CrossRefPubMedGoogle Scholar
  35. Necajeva, J. & G. Ievinsh, 2008. Seed germination of six coastal plant species of the Baltic region: effect of salinity and dormancy-breaking treatments. Seed Science Research 18: 173–177.CrossRefGoogle Scholar
  36. Nichols, P. G. H., A. I. Malik, M. Stockdale & T. D. Colmer, 2009. Salt tolerance and avoidance mechanisms at germination of annual pasture legumes: importance for adaptation to saline environments. Plant and Soil 315: 241–255.CrossRefGoogle Scholar
  37. O’Donnell, J., K. A. Fryirs & M. R. Leishman, 2016. Seed banks as a source of vegetation regeneration to support the recovery of degraded rivers: a comparison of river reaches of varying condition. Science of The Total Environment 542: 591–602.CrossRefPubMedGoogle Scholar
  38. Pennings, S. C., E. R. Selig, L. T. Houser & M. D. Bertness, 2003. Geographic variation in positive and negative interactions among salt marsh plants. Ecology 84: 1527–1538.CrossRefGoogle Scholar
  39. Qi, M., T. Sun, M. Zhan & S. F. Xue, 2016. Simulating dynamic vegetation changes in a tidal restriction area with relative stress tolerance curves. Wetlands 36: S31–S43.CrossRefGoogle Scholar
  40. Roman, C. T., W. A. Niering & R. S. Warren, 1984. Salt-Marsh vegetation change in response to tidal restriction. Environmental Management 8: 141–149.CrossRefGoogle Scholar
  41. Sarneel, J. M., R. H. Janssen, W. J. Rip, I. M. A. Bender & E. S. Bakker, 2014. Windows of opportunity for germination of riparian species after restoring water level fluctuations: a field experiment with controlled seed banks. Journal of Applied Ecology 51: 1006–1014.CrossRefGoogle Scholar
  42. Scheffer, M. & S. R. Carpenter, 2003. Catastrophic regime shifts in ecosystems: linking theory to observation. Trends in Ecology & Evolution 18: 648–656.CrossRefGoogle Scholar
  43. Schwarz, C., T. Ysebaert, Z. C. Zhu, L. Q. Zhang, T. J. Bouma & P. M. J. Herman, 2011. Abiotic factors governing the establishment and expansion of two salt marsh plants in the Yangtze Estuary, China. Wetlands 31: 1011–1021.CrossRefGoogle Scholar
  44. Silinski, A., M. Heuner, J. Schoelynck, S. Puijalon, U. Schroder, E. Fuchs, P. Troch, T. J. Bouma, P. Meire & S. Temmerman, 2015. Effects of wind waves versus ship waves on tidal marsh plants: a Flume study on different life stages of Scirpus maritimus. PLoS ONE 10: e0118687.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Snedden, G. A., K. Cretini & B. Patton, 2015. Inundation and salinity impacts to above- and belowground productivity in Spartina patens and Spartina alterniflora in the Mississippi River deltaic plain: implications for using river diversions as restoration tools. Ecological Engineering 81: 133–139.CrossRefGoogle Scholar
  46. Song, J. & B. S. Wang, 2015. Using euhalophytes to understand salt tolerance and to develop saline agriculture: Suaeda salsa as a promising model. Annals of Botany 115: 541–553.CrossRefPubMedGoogle Scholar
  47. Song, J., H. Fan, Y. Y. Zhao, Y. H. Jia, X. H. Du & B. S. Wang, 2008. Effect of salinity on germination, seedling emergence, seedling growth and ion accumulation of a euhalophyte Suaeda salsa in an intertidal zone and on saline inland. Aquatic Botany 88: 331–337.CrossRefGoogle Scholar
  48. Song, J., G. W. Shi, S. Xing, C. H. Yin, H. Fan & B. S. Wang, 2009. Ecophysiological responses of the euhalophyte Suaeda salsa to the interactive effects of salinity and nitrate availability. Aquatic Botany 91: 311–317.CrossRefGoogle Scholar
  49. Suding, K. N. & R. J. Hobbs, 2009. Threshold models in restoration and conservation: a developing framework. Trends in Ecology & Evolution 24: 271–279.CrossRefGoogle Scholar
  50. TerHeerdt, G. N. J., G. L. Verweij, R. M. Bekker & J. P. Bakker, 1996. An improved method for seed-bank analysis: seedling emergence after removing the soil by sieving. Functional Ecology 10: 144–151.CrossRefGoogle Scholar
  51. van Katwijk, M. M. & L. J. M. Wijgergangs, 2004. Effects of locally varying exposure, sediment type and low-tide water cover on Zostera marina recruitment from seed. Aquatic Botany 80: 1–12.CrossRefGoogle Scholar
  52. Visser, J. M. & J. K. Peterson, 2015. The effects of flooding duration and salinity on three common upper estuary plants. Wetlands 35: 625–631.CrossRefGoogle Scholar
  53. Weinstein, M. P., S. Y. Litvin & J. M. Krebs, 2014. Restoration ecology: ecological fidelity, restoration metrics, and a systems perspective. Ecological Engineering 65: 71–87.CrossRefGoogle Scholar
  54. Wolters, M., A. Garbutt, R. M. Bekker, J. P. Bakker & P. D. Carey, 2008. Restoration of salt-marsh vegetation in relation to site suitability, species pool and dispersal traits. Journal of Applied Ecology 45: 904–912.CrossRefGoogle Scholar
  55. Xie, T., B. S. Cui & S. Z. Li, 2017. Analysing how plants in coastal wetlands respond to varying tidal regimes throughout their life cycles. Marine Pollution Bulletin 123: 113–121.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of EnvironmentBeijing Normal UniversityBeijingChina
  2. 2.Department of Water EnvironmentChina Institute of Water Resources and Hydropower ResearchBeijingChina
  3. 3.Yellow River Delta Management StationThe Yellow River Delta National Nature Reserve AdministrationShandongChina

Personalised recommendations