Skip to main content
Log in

Herbivory effects on the periphytic algal functional diversity in lake ecosystems: an experimental approach

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Herbivory can determine the rates of ecosystem functions and is key factor to periphytic algae development. Here, we aimed to evaluate the effects of herbivory of zooplankton and omnivorous fish in periphytic algae of lake ecosystems. Based on prediction of grazer:prey size ratio, we tested that periphytic algal biomass and density will be lower in the fish treatments. Based on prediction of the size-selective predation, size-efficiency hypothesis, and general allometric equations, and that both herbivores will feed with distinct mode, we tested the hypothesis that periphytic algal functional diversity will be higher in the mixed treatment. There were four treatments (Control, T1-zooplankton, T2-fish, T3-zooplankton+fish). We evaluated algae biomass, density, functional traits, functional diversity, and the herbivory effect. Our results show that the presence of both herbivores were related to higher functional diversity, lower density values, and prostrate periphytic algae, and in T2 occurs higher periphytic algae biomass via nutrient facilitation. Fish was responsible for the higher consumer effect size, and was more important modifier than zooplankton of the periphytic algae community. The greater variation in producer species traits was directly related to mixed foraging patterns of herbivores together, which allow rare species to persist, decreasing the dominance of stronger competitive species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agasild, H., P. Zingel, I. Tonno, J. Haberman & T. Noges, 2007. Contribution of different zooplankton groups in grazing on phytoplankton in shallow eutrophic Lake Vortsjaev (Estonia). Hydrobiologia 584: 167–177.

    Article  Google Scholar 

  • Aguilera, M. A., N. Valdivia & B. R. Broitman, 2015. Herbivore-alga interaction strength influences spatial heterogeneity in a kelp-dominated intertidal community. PlosOne. https://doi.org/10.1371/journal.pone.0137287.

    Google Scholar 

  • Algarte, V. M., B. Dunck, A. Bichoff & L. Rodrigues, 2015. First record of Pithophora oedogonia (Montagne) Wittrock (Pithophoraceae) in the Upper Paraná River floodplain, Brazil. Check List 11: 1722–1725.

    Article  Google Scholar 

  • Algarte, V. M., B. Dunck, J. A. Leandrini & L. Rodrigues, 2016. Periphytic diatom ecological guilds in floodplain: ten years after dam. Ecological Indicators 69: 407–414.

    Article  Google Scholar 

  • Algarte, V. M., L. Rodrigues, V. L. Landeiro, T. Siqueira & L. M. Bini, 2014. Variance partitioning of deconstructed periphyton communities: does the use of biological traits matter? Hydrobiologia 722: 279–290.

    Article  Google Scholar 

  • Begon, M., J. L. Harper & C. R. Townsend, 1990. Ecology: individuals, populations and communities. Blackwell, Oxford.

    Google Scholar 

  • Bergamin, H., B. F. Reis & E. A. G. Zagato, 1978. A new device for improving sensitivity and stabilization in flow injection analysis. Analytica Chimica Acta 97: 427–431.

    Article  Google Scholar 

  • Berthon, V., A. Bouchez & F. Rimet, 2011. Using diatom life forms and ecological guilds to assess organic pollution and trophic level in rivers: a case study of rivers in southeastern France. Hydrobiologia 673: 59–271.

    Article  Google Scholar 

  • Biggs, B. J. F., R. J. Stevenson & R. L. Lowe, 1998. A habitat matrix conceptual model for stream periphyton. Archiv fur Hydrobiologie 143: 21–56.

    Article  Google Scholar 

  • Borges, P. A. F., S. Train, J. D. Dias & C. C. Bonecker, 2010. Effects of fish farming on plankton structure in a Brazilian tropical reservoir. Hydrobiologia 649: 279–291.

    Article  Google Scholar 

  • Bottrell, H. H., A. Duncan, Z. M. Gliwicz, E. Grygierek, A. Herzig, A. Hillbricht-Ilkowska, H. Kurasawa, P. Larsson & T. A. Weglenska, 1976. Review of some problems in zooplankton production studies. Norwegian Journal of Zoology 24: 419–456.

    Google Scholar 

  • Bray, J. R. & J. T. Curtis, 1957. An ordination of the Upland Forest Communities of Sourthern Wisconsin. Ecological Monographs 27: 325–349.

    Article  Google Scholar 

  • Brooks, J. L. & S. I. Dodson, 1965. Predation, body size and composition of plankton. Science 150: 28–35.

    Article  CAS  PubMed  Google Scholar 

  • Bundy, M. H., H. A. Vanderploeg, P. J. Lavrentyev & P. A. Kovalcilk, 2005. The importance of microzooplankton versus phytoplankton to copepod populations during late winter and early spring in Lake Michigan. Canadian Journal of Fish and Aquatic Sciences 62: 2371–2385.

    Article  CAS  Google Scholar 

  • Burkholder, J. M., 1996. Interaction of benthic algae with their substrata. In Stevenson, R. J., M. L. Bothwell & R. L. Lowe (eds), Algal Ecology. Academic Press, San Diego: 253–298.

    Chapter  Google Scholar 

  • Cattaneo, A. & J. Kalff, 1986. The effect of grazer size manipulation on periphyton communities. Oecologia 69: 612–617.

    Article  PubMed  Google Scholar 

  • Cattaneo, A. & B. Mousseau, 1995. Empirical analysis of the removal rate of periphyton by grazers. Oecologia 103: 249–254.

    Article  PubMed  Google Scholar 

  • Chessel, D., A. B. Dufour & J. Thioulouse, 2014. The ade4 package-I- One-table methods. R News 4: 5–10 [available on internet at https://www.r-project.org/doc/Rnews/bib/Rnewsbib.html].

  • Clarke, K. R. & M. A. Ainsworth, 1993. Method of linking multivariate community structure to environmental variables. Marine Ecology-Progress Series 92: 205–219.

    Article  Google Scholar 

  • Cunha, E. R., S. M. Thomaz, R. P. Mormul, E. G. Cafofo & A. B. Bonaldo, 2012. Macrophyte structural complexity influences spider assemblage attributes in wetlands. Wetlands 32: 369–377.

    Article  Google Scholar 

  • DeAngelis, D. L. 1992. Dynamics of nutrient cycling and food webs. Chapman and Hall, London.

    Book  Google Scholar 

  • DeNicola, D. M., C. D. McIntire, G. A. Lamberti, S. V. Gregory & L. R. Ashkenas, 1990. Temporal patterns of grazer-periphyton interactions in laboratory streams. –. Freshwater Biology 23: 475–489.

    Article  Google Scholar 

  • Dias, R. M., J. C. G. Ortega, L. C. Gomes & A. A. Agostinho, 2017. Trophic relationships in fish assemblages of Neotropical floodplain lakes: selectivity and feeding overlap mediated by food availability. Iheringia Série Zoologia 107(e2017035): 1–11.

    Google Scholar 

  • Dibble, E. D. & F. M. Pelicice, 2010. Influence of aquatic plant-specific habitat on an assemblage of small neotropical floodplain fishes. Ecology of freshwater fish 19(3): 381–389.

    Article  Google Scholar 

  • Doledec, S., D. Chessel, C. F. J. Ter Braak & S. Champley, 1996. Matching species traits to environmental variables: a new three-table ordination method. Environmental and Ecological Statistics 3: 143–166.

    Article  Google Scholar 

  • Duffy, J. E., 2002. Biodiversity and ecosystem function: the consumer connection. Oikos 99: 201–219.

    Article  Google Scholar 

  • Dunck, B., J. C. Bortolini, L. C. Rodrigues, S. Jati, S. Train & L. Rodrigues, 2013. Flood pulse drives functional diversity and adaptative strategies of planktonic and periphytic algae in isolated tropical floodplain lake (Brazil). Brazilian Journal of Botany 36: 257–266.

    Article  Google Scholar 

  • Dunck, B., V. M. Algarte, M. V. Cianciaruso & L. Rodrigues, 2016. Functional diversity and trait–environment relationships of periphytic algae in subtropical floodplain lakes. Ecological Indicators 67: 257–266.

    Article  Google Scholar 

  • Feminella, J. W. & C. P. Hawkins, 1995. Interactions between stream herbivores and periphyton: a quantitative analysis of past experiments. Journal of the North American Benthological Society 14: 465–509.

    Article  Google Scholar 

  • Ferragut, C. & D. C. Bicudo, 2010. Periphytic algal community adaptive strategies in N and P enriched experiments in a tropical oligotrophic reservoir. Hydrobiologia 646: 295–309.

    Article  CAS  Google Scholar 

  • Ferragut, C. & D. C. Bicudo, 2012. Effect of N and P enrichment on periphytic algal community succession in a tropical oligotrophic reservoir. Limnology 13: 131–141.

    Article  Google Scholar 

  • Fox, J. W., 2004. Effects of algal and herbivore diversity on the partitioning of biomass within and among trophic levels. Ecology 85: 549–559.

    Article  Google Scholar 

  • Golterman, H. L., R. S. Clymo & M. A. M. Ohmstad, 1978. Methods for Physical and Chemical Analysis of Fresh Waters. Blackwell, Oxford.

    Google Scholar 

  • Hedges, L. V., J. Gurevitch & P. S. Curtis, 1999. The meta-analysis of response ratios in experimental ecology. Ecology 80: 1150–1156.

    Article  Google Scholar 

  • Heino, J., D. Schmera & T. Erós, 2013. Macroecological perspective of trait patterns in stream communities. Freshwater Biology 58: 1539–1555.

    Article  Google Scholar 

  • Hillebrand, H., 2009. Meta-analysis of grazer control of periphyton biomass across aquatic ecosystems. Journal of Phycology 45: 798–806.

    Article  PubMed  Google Scholar 

  • Hillebrand, H. & B. Cardinale, 2004. Consumer effects decline with prey diversity. Ecology Letters 7: 192–201.

    Article  Google Scholar 

  • Hillebrand, H., B. Worm & H. K. Lotze, 2000. Marine microbenthic community structure regulated by nitrogen loading and grazing pressure. Marine Ecology Progress Series 204: 27–38.

    Article  CAS  Google Scholar 

  • Jackson, D. A., 1993. Stoping rules in principal components analysis: a comparison of heuristical and statistical approaches. Ecology 74: 2204–2214.

    Article  Google Scholar 

  • Kaggwa, M. N., D. M. Liti & M. Schagerl, 2011. Small tropical reservoirs and fish cage culture: a pilot study conducted in Machakos district, Kenya. Aquaculture International 18: 839–853.

    Article  Google Scholar 

  • Kahlert, M. & M. T. Baunsgaard, 1999. Nutrient recycling-a strategy of a grazer community to overcome nutrient limitation. Journal of the North American Benthological Society 18: 363–369.

    Article  Google Scholar 

  • Kembel, S. W., P. D. Cowan, M. R. Helmus, W. K. Cornwell, H. Morlon, D. D. Ackerly, S. P. Blomberg & C. O. Webb, 2010. Picante: r tools for integrating phylogenies and ecology. Bioinformatics 26: 1463–1464.

    Article  CAS  PubMed  Google Scholar 

  • Kupferberg, S., 1997. Facilitation of periphyton production by tadpole grazing: functional differences between species. Freshwater Biology 37: 427–439.

    Article  Google Scholar 

  • Lange, K., C. R. Townsend & C. D. Matthaei, 2016. A trait-based framework for stream algal communities. Ecology and Evolution 6: 23–36.

    Article  PubMed  Google Scholar 

  • Lange, K., A. Liess, J. J. Piggott, C. R. Townsend & C. D. Matthaei, 2011. Light, nutrients and grazing interact to determine stream diatom community composition and functional group structure. Freshwater Biology 56: 264–278.

    Article  Google Scholar 

  • Larson, C. A. & S. I. Passy, 2012. Taxonomic and functional composition of the algal benthos exhibits similar successional trends in response to nutrient supply and current velocity. FEMS Microbiology Ecology 80: 352–362.

    Article  CAS  PubMed  Google Scholar 

  • Law, R. J., J. A. Elliott & S. J. Thackeray, 2014. Do functional or morphological classifications explain stream phytobenthic community assemblages? Diatom Research. https://doi.org/10.1080/0269249X.2014.889037.

    Google Scholar 

  • Legendre, P. & L. Legendre, 1998. Numerical Ecology, 2nd ed. Elsevier, Amsterdam.

    Google Scholar 

  • Leira, M., M. L. Filippi & M. Cantonati, 2015. Diatom community response to extreme water-level fluctuations in two Alpine lakes: a core case study. Journal of Paleolimnology 3: 289–307.

    Article  Google Scholar 

  • Liess, A. & H. Hillebrand, 2004. Direct and indirect effects in herbivore - periphyton interactions. Archiv fur Hydrobiologie 159: 433–453.

    Article  Google Scholar 

  • Mahdy, A., U. Scharfenberger, R. Andrian & S. Hilt, 2014. Experimental comparison of periphyton removal by chironomid larvae and Daphnia magna. Inland Waters 5: 81–88.

    Article  Google Scholar 

  • McCormick, P. V., 1991. Lotic protistan herbivore selectivity and its potential impact on benthic algal assemblages. Journal of North America Benthological Society 10: 238–250.

    Article  Google Scholar 

  • McCormick, P. V. & R. J. Stevenson, 1991. Grazer control of nutrient availability in the periphyton. Oecologia 86: 287–291.

    Article  PubMed  Google Scholar 

  • Mcgill, B. J., B. J. Enquist, E. Weiher & M. Westoby, 2006. Rebuilding community ecology from functional traits. Trends in Ecology and Evolution 21: 178–185.

    Article  Google Scholar 

  • Oksanen, J., F. G. Blanchet, R. Kindt, P. Legendre, P. R. Minchin, R. B. O’hara, G. L. Simpson, M. P Solymos, H. H. Stevens, & H. Wagner, 2013. Vegan: community ecology package. R package version 20-9 2013. [available on internet at https://cran.r-project.org/package=vegan].

  • Passy, S. I., 2007. Diatom ecological guilds display distinct and predictable behavior along nutrient and disturbance gradients in running waters. Aquatic Botany 86:171–178.

  • Patrick, R., M. H. Hohn & J. H. Wallace, 1954. A new method for determining the pattern of the diatom flora. Notulae Naturae 259: 1–9.

    Google Scholar 

  • Pavoine, S., J. Vallet, A. B. Dufour, S. Gachet & H. Daniel, 2009. On the challenge of treating various types of variables: application for improving the measurement of functional diversity. Oikos 118: 391–402.

    Article  Google Scholar 

  • Peters, R. H., 1983. The ecological implications of body size. Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Poff, N. L. & J. V. Ward, 1995. Herbivory under different flow regimes: a field experiment and test of a model with a benthic stream insect. Oikos 72: 179–188.

    Article  Google Scholar 

  • R Development Core Team, (2014). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, [available on internet at https://www.R-project.org].

  • Rakowski, C. & B. J. Cardinale, 2016. Herbivores control effects of algal species richness on community biomass and stability in a laboratory microcosm experiment. Oikos. https://doi.org/10.1111/oik.03105.

    Google Scholar 

  • Rimet, F. & A. Bouchez, 2011. Use of diatom life-forms and ecological guilds to assess pesticide contamination in rivers: lotic mesocosm approaches. Ecological Indicators 11: 489–499.

    Article  CAS  Google Scholar 

  • Roberto, M. C., N. F. Santana & S. M. Thomaz, 2009. Limnology in the upper Paraná river floodplain: large-scale spatial and temporal patterns, and the influence of reservoirs. Brazilian Journal of Biology 69: 717–725.

    Article  CAS  Google Scholar 

  • Ros, J., 1979. Práctica de Ecologia. Omega, Barcelona.

    Google Scholar 

  • Round, F. E., 1971. The taxonomy of the Chlorophyta, 2. Journal of the British Phycological Society 6: 235–264.

    Article  Google Scholar 

  • Schmitz, O. J., 2008. Herbivory from individuals to ecosystems. Annual Review of Ecology, Evolution and Systematics 39: 133–152.

    Article  Google Scholar 

  • Siehoff, S., M. Hammers-Wirtz, T. Strauss & H. T. Ratte, 2009. Periphyton as alternative food source for the filter-feeding cladoceran Daphnia magna. Freshwater Biology 54: 15–23.

    Article  Google Scholar 

  • Simões, N. R., F. A. Lansac-Tôha, L. F. M. Velho & C. C. Bonecker, 2012. Intra and inter-annual structure of zooplankton communities in floodplain lakes: a long-term ecological research study. International Journal of Tropical Biology 60: 1819–1836.

    Google Scholar 

  • Sipaúba-Tavares, L. H., L. M. Seto & R. N. Millan, 2014. Seasonal variation of biotic and abiotic parameters in parallel neotropical fishponds. Brazilian Journal of Biology 74: 166–174.

  • Sládecková, A. & V. Sládecek, 1977. Periphyton as indicator of the reservoir water quality II - pseudo-periphyton. Archiv fur Hydrobiologie 19: 176–191.

    Google Scholar 

  • Steinman, A. D., 1996. Effects of grazers on freshwater benthic algae. In Stevenson, R. J., M. L. Bothwell & R. L. Lowe (eds), Algal Ecology. Academic Press, San Diego: 341–373.

    Chapter  Google Scholar 

  • Steinman, A. D., P. J. Mulholland & W. R. Hill, 1992. Functional responses associated with growth forms in stream algae. Journal of the North American Benthological Society 11: 229–243.

    Article  Google Scholar 

  • Stenger-Kovács, C., E. Lengyel, L. O. Crossetti, V. Vuveges & J. Padisák, 2013. Diatom ecological guilds as indicators of temporally changing stressors and disturbances in the small Torna-stream, Hungary. Ecological Indicators 24: 138–147.

    Article  Google Scholar 

  • Tapolczai, K., A. Bouchez, C. Stenger-Kovács, J. Padisák & F. Rimet, 2016. Trait-based ecological classifications for benthic algae: review and perspectives. Hydrobiologia 776: 1–17.

    Article  Google Scholar 

  • Tófoli, R. M., N. S. Hahn, G. H. Z. Alves & G. C. Novakowski, 2010. Uso do alimento por duas espécies simpátricas de Moenkhausia (Characiformes, Characidae) em um riacho da Região Centro-Oeste do Brasil. Iheringia Série Zoologica 100: 201–206.

    Article  Google Scholar 

  • Utermöhl, H., 1958. Zur Vervollkommnung der quantitativen phytoplankton-methodic. Mitteilungen Internationale Vereinigung für Theoretische und Angewandte Limnologie 9: 1–39.

    Google Scholar 

  • Vercellino, I. S. & D. C. Bicudo, 2006. Sucessão da comunidade de algas perifíticas em reservatório oligotrófico tropical (São Paulo, Brasil): comparação entre período seco e chuvoso. Revista Brasileira de Botânica 29: 363–377.

    Google Scholar 

  • Violle, C., M. L. Navas, D. Vile, E. Kazakou, C. Fortunel, I. Hummel & E. Garnier, 2007. Let the concept of trait be functional. Oikos 116: 882–892.

    Article  Google Scholar 

  • Webb, C. O., 2000. Exploring the phylogenetic structure of ecological communities: an example for rain forest trees. American Naturalist 156: 145–155.

    Article  PubMed  Google Scholar 

  • Webb, C. T., J. A. Hoeting, G. M. Ames, M. I. Pyne & N. L. Poff, 2010. A structured and dynamic framework to advance traits-based theory and prediction in ecology. Ecology Letters 13: 267–283.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank two anonymous reviewers for excellent comments that substantially improved this paper. We thank the Coordination for the Improvement of Higher Education Personnel (CAPES) for granting B.Dunck with post-doctoral scholarship and D.C.Amaral, U.L.Fernandes, T.M.Lopes and N.Santana with doctoral scholarships; the National Council for Scientific and Technological Development (CNPq) for granting L.Rodrigues with productivity support; the Long-Term Ecological Research (CNPq-PELD-Brazil) and the Research Center in Limnology, Ichthyology and Aquaculture (Nupélia) for technical and logistical support during the conduction of this study; and the Laboratory of Zooplankton and Ecology of fish for scientific support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bárbara Dunck.

Additional information

Handling editor: Mariana Meerhoff

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLS 31 kb)

Supplementary material 2 (XLS 54 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dunck, B., Amaral, D.C., Fernandes, U.L. et al. Herbivory effects on the periphytic algal functional diversity in lake ecosystems: an experimental approach. Hydrobiologia 816, 231–241 (2018). https://doi.org/10.1007/s10750-018-3587-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-018-3587-y

Keywords

Navigation