, Volume 831, Issue 1, pp 43–54 | Cite as

Extreme drought favors potential mixotrophic organisms in tropical semi-arid reservoirs

  • Mariana R. A. CostaEmail author
  • Rosemberg F. Menezes
  • Hugo Sarmento
  • José L. Attayde
  • Leonel da S. L. Sternberg
  • Vanessa Becker


Climate change is affecting the global hydrological cycle and is causing drastic changes in the freshwater hydrological regime. Water level (WL) reduction caused by drought tends to increase the concentration of nutrients favoring the dominance of cyanobacteria. We hypothesized that the WL reduction favors the dominance of cyanobacteria at regular dry conditions, but at extremely dry events mixotrophic algae would thrive because of light limitation due to increased resuspension of sediments on the water column. To test our hypothesis, we compared phytoplankton traits and water quality variables between two sets of reservoirs located in two watersheds with contrasting precipitation regimes within the Brazilian semi-arid. The reservoirs were compared in a dry period and in an extremely dry period to evaluate the response of the variables to an extreme drought. Drought intensification decreased the reservoirs’ WL and water transparency and increased the total phosphorous. Cyanobacteria dominated in the dry period, and the contribution of mixotrophic algae increased in the extremely dry period. Thus, phytoplankton with mixotrophic potential was favored by the extreme drought. This result suggests that this can be one possible scenario for phytoplankton communities in reservoirs of semi-arid regions if extreme droughts become more frequent because of climate change.


Climate change Water level reduction Water quality Phytoplankton Functional traits Cyanobacteria 



This work was supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (Process Numbers: 442484/2014-3/MCTI/CNPq/Universal 14/2014 and 446138/2015-0/MCTI/CNPq/ANA/N°23/2015) and Process Numbers 407783/2016-4 CNPq/Universal, Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES/PNPD–Project N°: 2304/2011), Fundação de Pesquisa de São Paulo (FAPESP) (Processes: 2014/14139-3 and 2016/50494-8). We are grateful to CAPES for granting the Ph.D. scholarship (M.R.A. Costa). We also thank the many people who helped during the field work and laboratory analysis, especially Edson Santana, Bruno Wanderley, Anízio Souza, Carlos Alberto Rocha-Júnior, Juliana Leroy, Regina Nobre, Pedro Junger, Bruno Wanderley, Lenice Ventura, Bárbara Bezerra, Cleto Freire and Isaac Falcão.


  1. Alvares, C. A., J. L. Stape, P. C. Sentelhas, J. L. M. Gonçalves & G. Sparovek, 2013. Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift 22: 711–721.CrossRefGoogle Scholar
  2. Anderson, M. R. & R. B. Rivkin, 2001. Seasonal patterns in grazing mortality of bacterioplankton in polar oceans: a bipolar comparison. Aquatic Microbial Ecology 25: 195–206.CrossRefGoogle Scholar
  3. Barbosa, J. E. D. L., E. S. F. Medeiros, J. Brasil, R. D. S. Cordeiro, M. C. B. Crispim & G. H. G. Silva, 2012. Aquatic systems in semi-arid Brazil: limnology and management. Acta Limnologica Brasiliensia 24: 103–118.CrossRefGoogle Scholar
  4. Bowen, G. J. & J. Revenaugh, 2003. Interpolating the isotopic composition of modern meteoric precipitation. Water Resources Research 39: 1–9.CrossRefGoogle Scholar
  5. Brasil, J. & V. L. M. Huszar, 2011. O papel dos traços funcionais na ecologia do fitoplâncton continental. Oecologia Australis 15: 799–834.CrossRefGoogle Scholar
  6. Brazilian National Institute of Meteorology (INMET), 2016.
  7. Cole, G. A., 1994. Textbook of Limnology. Waveland Press, Illinois.Google Scholar
  8. Costa, M. R. A., J. L. Attayde & V. Becker, 2016. Effects of water level reduction on the dynamics of phytoplankton functional groups in tropical semi-arid shallow lakes. Hydrobiologia 778: 75–89.CrossRefGoogle Scholar
  9. De Senerpont Domis, L. N., J. J. Elser, A. S. Gsell, V. L. M. Huszar, B. W. Ibelings, E. Jeppesen, S. Kosten, W. M. Mooij, F. Roland, U. Sommer, E. van Donk, M. Winder & M. Lürling, 2013a. Plankton dynamics under different climate conditions in tropical freshwater systems (a reply to the comment by Sarmento, Amado & Descy, 2013). Freshwater Biology 58: 2211–2213.CrossRefGoogle Scholar
  10. De Senerpont Domis, L. N., J. J. Elser, A. S. Gsell, V. L. M. Huszar, B. W. Ibelings, E. Jeppesen, S. Kosten, W. M. Mooij, F. Roland, U. Sommer, E. Van Donk, M. Winder & M. Lürling, 2013b. Plankton dynamics under different climatic conditions in space and time. Freshwater Biology 58: 463–482.CrossRefGoogle Scholar
  11. Flynn, K. J., D. K. Stoecker, A. Mitra, J. A. Raven, P. M. Glibert, P. J. Hansen, E. Granéli & J. M. Burkholder, 2013. Misuse of the phytoplankton-zooplankton dichotomy: the need to assign organisms as mixotrophs within plankton functional types. Journal of Plankton Research 35: 3–11.CrossRefGoogle Scholar
  12. Gast, R. J., Z. M. McKie-Krisberg, S. A. Fay, J. M. Rose & R. W. Sanders, 2014. Antarctic mixotrophic protist abundances by microscopy and molecular methods. FEMS Microbiology Ecology 89: 388–401.CrossRefGoogle Scholar
  13. Gat, J. R. & C. Bowser, 1991. The heavy isotope enrichment of water in coupled evaporative systems. In Taylor, H. P., J. R. O’Neil & I. R. Kaplan (eds), Stable Isotope Geochemistry A tribute to Samuel Epstein. Geochemistry Society, St. Louis: 159–168.Google Scholar
  14. Hartmann, M., C. Grob, G. A. Tarran, A. P. Martin, P. H. Burkill, D. J. Scanlan & M. V. Zubkov, 2012. Mixotrophic basis of Atlantic oligotrophic ecosystems. Proceedings of the National Academy of Sciences of the United States of America 109: 5756–5760.CrossRefGoogle Scholar
  15. Hillebrand, H., C.-D. Dürselen, D. Kirschtel, U. Pollingher & T. Zohary, 1999. Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology 35: 403–424.CrossRefGoogle Scholar
  16. Huisman, J. & F. J. Weissing, 1994. Competition for nutrients and light in a mixed water column.pdf. The American Naturalist 146: 536–564.CrossRefGoogle Scholar
  17. IPCC Climate Change, 2014. Impacts, adaptation an vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernamental Painel on Climate Change. Cambridge University Press, Cambridge, UK.Google Scholar
  18. Jeppesen, E., M. Meerhoff, T. A. Davidson, D. Trolle, M. Søndergaard, T. L. Lauridsen, M. Beklioğlu, S. Brucet, P. Volta, I. González-Bergonzoni & N. Nielsen, 2014. Climate change impacts on lakes: an integrated ecological perspective based on a multi-faceted approach, with special focus on shallow lakes. Journal of Limnology 73: 84–107.CrossRefGoogle Scholar
  19. Jeppesen, E., S. Brucet, L. Naselli-Flores, E. Papastergiadou, K. Stefanidis, T. Nõges, P. Nõges, J. L. Attayde, T. Zohary, J. Coppens, T. Bucak, R. F. Menezes, F. R. S. Freitas, M. Kernan, M. Søndergaard & M. Beklioğlu, 2015. Ecological impacts of global warming and water abstraction on lakes and reservoirs due to changes in water level and related changes in salinity. Hydrobiologia 750: 201–227.CrossRefGoogle Scholar
  20. Jespersen, A. M. & K. Christoffersen, 1988. Measurements of chlorophyll-a from phytoplankton using ethanol as extraction solventle. Hydrobiologia 109: 445–454.Google Scholar
  21. Jones, R. I., 2000. Mixotrophy in plantonic protists: an overview. Freshwater Biology 45: 219–226.CrossRefGoogle Scholar
  22. Jones, H., C. S. Cockell, C. Goodson, N. Price, A. Simpson & B. Thomas, 2009. Experiments on mixotrophic protists and catastrophic darkness. Astrobiology 9: 563–571.CrossRefGoogle Scholar
  23. Kosten, S., F. Roland, D. M. L. Motta Marques, E. H. Van Ness, N. Mazzeo, L. S. L. Stenberg, M. Sheffer & J. J. Cole, 2010. Climate-dependent CO2 emissions from lakes. Global Biogeochemical Cycles 24: 1–7.CrossRefGoogle Scholar
  24. Laybourn-Parry, J., 2002. Survival mechanisms in Antarctic lakes. Philosophical Transactions: Biological Sciences 357: 863–869.CrossRefGoogle Scholar
  25. Kritzberg, E. S., W. Granéli, J. Björk, C. Brönmark, P. Hallgren, A. Nicolle, A. Persson & L. A. Hansson, 2014. Warming and browning of lakes: consequences for pelagic carbon metabolism and sediment delivery. Freshwater Biology 59: 325–336.CrossRefGoogle Scholar
  26. Litchman, E. & C. A. Klausmeier, 2008. Trait-based community ecology of phytoplankton. Annual Review of Ecology 39: 615–639.CrossRefGoogle Scholar
  27. Marengo, J. A., T. Ambrizzi, R. P. da Rocha, L. M. Alves, S. V. Cuadra, M. C. Valverde, R. R. Torres, D. C. Santos & S. E. T. Ferraz, 2009. Future change of climate in South America in the late twenty-first century: intercomparison of scenarios from three regional climate models. Climate Dynamics 35: 1073–1097.CrossRefGoogle Scholar
  28. Mc Cune, B. & M.J. Mefford, 2011. PC-ORD. Multivariate analysis of ecological data. version 6.0. MjM Software Design, Oregon.Google Scholar
  29. McGill, B. J., B. J. Enquist, E. Weiher & M. Westoby, 2006. Rebuilding community ecology from functional traits. Trends in Ecology Evolution 21: 178–185.CrossRefGoogle Scholar
  30. McKie-Krisberg, Z. M., R. J. Gast & R. W. Sanders, 2015. Physiological responses of three species of Antarctic mixotrophic phytoflagellates to changes in light and dissolved nutrients. Microbial Ecology 70: 21–29.CrossRefGoogle Scholar
  31. Medeiros, L. C., A. Mattos, M. Lurling & V. Becker, 2015. Is the future blue-green or brown? The effects of extreme events on phytoplankton dynamics in a semi-arid man-made lake. Aquatic Ecology 49: 293–307.CrossRefGoogle Scholar
  32. Naselli-Flores, L. & R. Barone, 2005. Water-level fluctuations in Mediterranean reservoirs: setting a dewatering threshold as a management tool to improve water quality. Hydrobiologia 548: 85–99.CrossRefGoogle Scholar
  33. Naselli-Flores, L. & R. Barone, 2012. Phytoplankton dynamics in permanent and temporary Mediterranean waters: is the game hard to play because of hydrological disturbance? Hydrobiologia 698: 147–159.CrossRefGoogle Scholar
  34. New, M., D. Lister, M. Hulme & I. Makin, 2002. A high-resolution data set of surface climate over global land areas. Climate Research 21: 1–25.CrossRefGoogle Scholar
  35. Paerl, H. W., 2009. Controlling eutrophication along the freshwater–marine continuum: dual nutrient (N and P) reductions are essential. Estuaries and Coasts 32: 593–601.CrossRefGoogle Scholar
  36. Reynolds, C. S., 2006. The Ecology of Phytoplankton (Ecology Biodiversity and Conservation). Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  37. Reynolds, C. S., & A. E. Irish, 1997. Modelling phytoplankton dynamics in lakes and reservoirs: the problem of in-situ growth rates. Hydrobiologia 349: 5–17.CrossRefGoogle Scholar
  38. Roland, F., V. L. M. Huszar, V. F. Farjalla, A. Enrich-Prast, A. M. Amado & J. P. H. B. Ometto, 2012. Climate change in Brazil: perspective on the biogeochemistry of inland waters. Brazilian Journal of Biology 72: 709–722.CrossRefGoogle Scholar
  39. Rothhaupt, K., 1996. Laboratorary experiments with a mixotrophic chrysophyte and obligately phagotrophic and photographic competitors. Ecology 77: 716–724.CrossRefGoogle Scholar
  40. Rozanski, K., K. Froehlich & W. G. Mook, 2001. Surface water. In W. G. Mook (ed), Environmental Isotopes in the Hydrological Cycle: Principles and Applications. UNESCO/IAEA, Paris: 121.Google Scholar
  41. Saad, J. F., M. R. Schiaffino, A. Vinocur, I. O’Farrell, G. Tell & I. Izaguirre, 2013. Microbial planktonic communities of freshwater environments from Tierra del Fuego: dominant trophic strategies in lakes with contrasting features. Journal of Plankton Research 35: 1220–1233.CrossRefGoogle Scholar
  42. Saad, J. F., F. Unrein, P. M. Tribelli, N. López & I. Izaguirre, 2016. Influence of lake trophic conditions on the dominant mixotrophic algal assemblages. Journal of Plankton Research 38(4): 818–829.CrossRefGoogle Scholar
  43. Sanders, R., 1991. Mixotrophic protists in marine and freshwater ecosystems. Journal of Protozoology 38: 76–81.CrossRefGoogle Scholar
  44. Sarmento, H., A. M. Amado & J.-P. Descy, 2013. Climate change in tropical fresh waters (comment on the paper “Plankton dynamics under different climatic conditions in space and time” by de Senerpont Domis et al.,). Freshwater Biology 58: 2208–2210.CrossRefGoogle Scholar
  45. Soares, M. C. S., M. M. Marinho, S. M. O. F. Azevedo, C. W. C. Branco & V. L. M. Huszar, 2012. Eutrophication and retention time affecting spatial heterogeneity in a tropical reservoir. Limnologica 42: 197–203.CrossRefGoogle Scholar
  46. Ter Braak, C. J. F. & I. C. Prentice, 1988. A theory of gradient analysis. Advances in Ecological Research 18: 271–317.CrossRefGoogle Scholar
  47. Uehlinger, V., 1964. Étude statistique des méthodes de dénobrement planctonique. Archive Science 17: 121–123.Google Scholar
  48. Unrein, F., J. M. Gasol, F. Not, I. Forn & R. Massana, 2014. Mixotrophic haptophytes are key bacterial grazers in oligotrophic coastal waters. The ISME Journal 8: 164–176.CrossRefGoogle Scholar
  49. Unrein, F., R. Massana, L. Alonso-Sáez & J. M. Gasol, 2007. Significant year-round effect of small mixotrophic flagellates on bacterioplankton in an oligotrophic coastal system. Limnology and Oceanography 52: 456–469.CrossRefGoogle Scholar
  50. Utermöhl, H., 1958. Zur vervollkommung der quantitativen phytoplankton methodik. Mitteilungen der international. Vereinigung für Theoretische und Angewandte Limnologie 9: 1–38.Google Scholar
  51. Valderrama, J., 1981. The simultaneous analysis of total nitrogen and phosphorus in natural waters. Marine Chemistry 10: 109–122.CrossRefGoogle Scholar
  52. Wetzel, R. G. & G. E. Likens, 2000. Limnological Analyses. Springer, New York.CrossRefGoogle Scholar
  53. Woodward, G., D. M. Perkins & L. E. Brown, 2010. Climate change and freshwater ecosystems: impacts across multiple levels of organization. Philosophical transactions of the Royal Society of London. Series B 365: 2093–2106.Google Scholar
  54. Yang, J., H. Lv, J. Yang, L. Liu, X. Yu & H. Chen, 2016. Decline in water level boosts cyanobacteria dominance in subtropical reservoirs. Science of the Total Environment 557: 445–452.CrossRefGoogle Scholar
  55. Zohary, T., J. Padisák & L. Naselli-Flores, 2010. Phytoplankton in the physical environment: beyond nutrients, at the end, there is some light. Hydrobiologia 639: 261–269.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Mariana R. A. Costa
    • 1
    Email author
  • Rosemberg F. Menezes
    • 2
    • 3
  • Hugo Sarmento
    • 4
  • José L. Attayde
    • 2
  • Leonel da S. L. Sternberg
    • 5
  • Vanessa Becker
    • 1
    • 6
  1. 1.Programa de Pós-Graduação Em EcologiaUniversidade Federal do Rio Grande do Norte (UFRN)NatalBrazil
  2. 2.Departamento de EcologiaUniversidade Federal do Rio Grande do Norte (UFRN)NatalBrazil
  3. 3.Departamento de Fitotecnia e Ciências AmbientaisUniversidade Federal da Paraíba (UFPB)AreiaBrazil
  4. 4.Departamento de HidrobiologiaUniversidade Federal de São Carlos (UFSCar)São CarlosBrazil
  5. 5.Department of BiologyUniversity of MiamiCoral GablesUSA
  6. 6.Departamento de Engenharia CivilUniversidade Federal do Rio Grande do Norte (UFRN)NatalBrazil

Personalised recommendations