, Volume 816, Issue 1, pp 165–178 | Cite as

Effects of environmental and anthropogenic drivers on the spatial distribution of deep-sea shrimps in the Ligurian and Tyrrhenian Seas (NW Mediterranean)

  • Francesco Masnadi
  • Alessandro Criscoli
  • Luca Lanteri
  • Alessandro Mannini
  • Giacomo C. Osio
  • Paolo Sartor
  • Mario Sbrana
  • Alessandro Ligas
Primary Research Paper


In the Mediterranean Sea, Aristaeomorpha foliacea and Aristeus antennatus are the most important target species of deep-sea trawl fisheries. Previous studies performed in several areas of the Mediterranean highlighted the key role played by both environmental factors, such as temperature, and anthropogenic activities, such as fishing, in affecting the abundance and distribution of the two species. The present study is aimed at investigating the effects of environmental and anthropogenic drivers on the abundance and spatial distribution of A. foliacea and A. antennatus in the Ligurian and northern and central Tyrrhenian Seas (NW Mediterranean). To this end, the time series of MEDITS trawl survey data (1994–2015) were analyzed together with environmental variables, namely sea surface temperature, current speed, and fishing effort by means of GAM. The results show that fishing plays an important role in shaping the spatial distribution of the two species. A. antennatus is prevalent where fishing effort is higher; this can be related to the higher resilience of blue and red shrimp to fishery impact. In contrast, high temperatures are associated to the prevalence of A. foliacea. Therefore, the abundance and spatial distribution of this species is mainly driven by temperature.


Mediterranean sea Deep sea Trawl survey Red shrimps GAMs 



The authors are grateful to the Editor and two anonymous reviewers for their comments and suggestions, which contributed to improvement at the manuscript stage.


  1. Anderson, C. N. K., C. Hsieh, S. A. Sandin, R. Hewitt, A. Hollowed, J. Beddington, R. M. May & G. Sugihara, 2008. Why fishing magnifies fluctuations in fish abundance. Nature 452: 835–839.CrossRefPubMedGoogle Scholar
  2. Beggs, S. E., M. Cardinale, R. J. Gowen & V. Bartolino, 2013. Linking cod (Gadus morhua) and climate: investigating variability in Irish Sea cod recruitment. Fisheries Oceanography 23: 54–64.CrossRefGoogle Scholar
  3. Belcari, P., C. Viva, M. Mori & S. De Ranieri, 1997. Fishery and biology of Aristaeomorpha foliacea (Risso, 1827) (Crustacea: Decapoda) in the Northern Tyrrhenian Sea (western Mediterranean). Journal of the Northwestern Atlantic Fishery Science 31: 195–204.CrossRefGoogle Scholar
  4. Bertrand, J. A., L. Gil de Sola, C. Papaconstantinou, G. Relini & A. Souplet, 2002. The general specifications of the MEDITS surveys. Scientia Marina 66(Suppl. 2): 9–17.CrossRefGoogle Scholar
  5. Capezzuto, F., R. Carlucci, P. Maiorano, L. Sion, D. Battista, A. Giove, A. Indennidate, A. Tursi & G. D’Onghia, 2010. The bathyal benthopelagic fauna in the north-western Ionian Sea: structure, patterns and interactions. Chemistry and Ecology 26: 199–217.CrossRefGoogle Scholar
  6. Carbonell, A., M. Carbonell, M. Demestre, A. Grau & S. Monserrat, 1999. The red shrimp Aristeus antennatus (Risso, 1816) fishery and biology in the Balearic Islands, Western Mediterranean. Fisheries Research 44: 1–13.CrossRefGoogle Scholar
  7. Carlucci, R., G. D’Onghia, L. Sion, P. Maiorano & A. Tursi, 2006. Selectivity parameters and size at first maturity in deep-water shrimps, Aristaeomorpha foliacea (Risso, 1827) and Aristeus antennatus (Risso, 1816), from the North-Western Ionian Sea (Mediterranean Sea). Hydrobiologia 557: 145–154.CrossRefGoogle Scholar
  8. Cartes, J. E., F. Maynou & E. Fanelli, 2011. Nile damming as plausible cause of extinction and drop in abundance of deep-sea shrimp in the western Mediterranean over broad spatial scales. Progress in Oceanography 91: 286–294.CrossRefGoogle Scholar
  9. Cartes, J. E., E. Fanelli, K. Kapiris, Y. K. Bayhan, A. Ligas, C. López-Pérez, M. Murenu, V. Papiol, P. Rumolo & G. Scarcella, 2014. Spatial variability in the trophic ecology and biology of the deep-sea shrimp Aristaeomorpha foliacea in the Mediterranean Sea. Deep-Sea Research I 87: 1–13.CrossRefGoogle Scholar
  10. Chartosia, N., T. Tzomos, M. S. Kitsos, I. Karani, A. Tselepidesand & A. Koukouras, 2005. Diet comparison of the bathyal shrimps, Aristeus antennatus (Risso, 1816) and Aristaeomorpha foliacea (Risso, 1827) (Decapoda, Aristeidae) in the eastern Mediterranean. Crustaceana 78(3): 273–284.CrossRefGoogle Scholar
  11. Cau, A., A. Carbonell, M. C. Follesa, A. Mannini, L. Norrito, L. Orsi-Relini, C.-Y. Politou, S. Ragonese & P. Rinelli, 2002. MEDITS-based information on the deep-water red shrimps Aristaeomorpha foliacea and Aristeus antennatus (Crustacea: Decapoda: Aristeidae). Scientia Marina 66(Suppl. 2): 103–124.CrossRefGoogle Scholar
  12. Colloca, F., G. Mastrantonio, G. Jona Lasinio, A. Ligas & P. Sartor, 2014. Parapenaeus longirostris (Lucas, 1846) an early warning indicator species of global warming in the central Mediterranean Sea. Journal of Marine Systems 138: 29–39.CrossRefGoogle Scholar
  13. Company, J. B., P. Puig, F. Sardà, A. Palanques, M. Latasa & R. Scharek, 2008. Climate influence on deep sea populations. Plos ONE 3(1): e1431. Scholar
  14. Demestre, M. & P. Martín, 1993. Optimum exploitation of a demersal resource in the western Mediterranean: the fishery of the deep-water shrimp Aristeus antennatus (Risso, 1816). Scientia Marina 57(2–3): 175–182.Google Scholar
  15. D’Onghia, G., F. Capezzuto, C. Y. Mytilineou, P. Maiorano, K. Kapiris, R. Carlucci, L. Sion & A. Tursi, 2005. Comparison of the population structure and dynamics of Aristeus antennatus (Risso, 1816) between exploited and unexploited areas in the Mediterranean Sea. Fisheries Research 76: 22–38.CrossRefGoogle Scholar
  16. D’Onghia, G., P. Maiorano, F. Capezzuto, R. Carlucci, D. Battista, A. Giove, L. Sion & A. Tursi, 2009. Further evidences of deep-sea recruitment of Aristeus antennatus (Crustacea: Decapoda) and its role in the population renewal on the exploited bottoms of the Mediterranean. Fisheries Research 95: 236–245.CrossRefGoogle Scholar
  17. D’Onghia, G., A. Giove, P. Maiorano, R. Carlucci, M. Minerva, F. Capezzuto, L. Sion & A. Tursi, 2012. Exploring Relationships between Demersal Resources and Environmental Factors in the Ionian Sea (Central Mediterranean). Journal of Marine Biology. Scholar
  18. Elith, J. & J. R. Leathwick, 2009. Species distribution models: ecological explanation and prediction across space and time. Annual Review of Ecology, Evolution, and Systematics 40: 677–697.CrossRefGoogle Scholar
  19. Fanelli, E. & J. E. Cartes, 2010. Temporal variations in the feeding habits and trophic levels of three deep-sea demersal fishes from the western Mediterranean Sea, based on stomach contents and stable isotope analyses. Marine Ecology Progress Series 402: 213–232.CrossRefGoogle Scholar
  20. FAO, 2003. The ecosystem approach to fisheries. FAO Technical Guidelines for Responsible Fisheries No. 4. FAO, Rome.Google Scholar
  21. FAO, 2016. Report of the FAO Workshop on Deep-sea Fisheries and Vulnerable Marine Ecosystems of the Mediterranean, Rome, Italy, 18–20 July 2016. FAO Fisheries and Aquaculture Report No. 1183. FAO, Rome.Google Scholar
  22. Fernández, M. V., S. Heras, F. Maltagliati, A. Turco & M. I. Roldán, 2011. Genetic structure in the blue and red shrimp Aristeus antennatus and the role played by hydrographical and oceanographical barriers. Marine Ecology Progress Series 421: 163–171.CrossRefGoogle Scholar
  23. Fernández, M. V., S. Heras, J. Vinas, F. Maltagliati & M. I. Roldán, 2013. Multilocus comparative phylogeography of two aristeid shrimps of high commercial interest (Aristeus antennatus and Aristaeomorpha foliacea) reveals different responses to past environmental changes. PLoS ONE. Scholar
  24. Figueiredo, M. J., I. Figueiredo & P. Bordalo Machado, 2001. Deep-water penaeid shrimps (Crustacea: Decapoda) from off the Portuguese continental slope: an alternative future resource? Fisheries Research 51: 321–326.CrossRefGoogle Scholar
  25. GFCM, 2017. Report of the Working Group on Stock Assessment of Demersal Species (WGSAD), Rome, Italy, 7–12 November 2016. FAO, Rome.Google Scholar
  26. Guijarro, B., E. Massutí, J. Moranta & P. Díaz, 2008. Population dynamics of the red shrimp Aristeus antennatus in the Balearic Islands (western Mediterranean): short spatio-temporal differences and influence of environmental factors. Journal of Marine Systems 71: 385–402.CrossRefGoogle Scholar
  27. Harley, C. D. G., A. R. Hughes, K. M. Hultgren, B. G. Miner, C. J. B. Sorte, C. S. Thornber, L. F. Rodriguez, L. Tomanek & S. L. Williams, 2006. The impacts of climate change in coastal marine systems. Ecology Letters 9: 228–241.CrossRefPubMedGoogle Scholar
  28. Hastie, T.J., R.J. Tibshirani, 1990. Generalized additive models. Monogr. Stat. Appl. Probability 43, 335 p. Chapman & Hall, Boca Raton.Google Scholar
  29. Holthuis, L.B. 1980. FAO species catalogue. Vol.1. Shrimps and prawns of the world. An annotated catalogue of species of interest to fisheries. FAO Fish. Synop. No. 125. FAO, Rome.Google Scholar
  30. Koslow, J. A., G. W. Boehlert, J. D. M. Gordon, R. L. Haedrich, P. Lorance & N. Parin, 2000. Continental slope and deep-sea fisheries: implications for a fragile ecosystem. ICES Journal of Marine Science 57: 548–557.CrossRefGoogle Scholar
  31. Ligas, A., S. De Ranieri, D. Micheli, B. Reale, P. Sartor, M. Sbrana & P. Belcari, 2010. Analysis of the landings and trawl survey time series from the Tyrrhenian Sea (NW Mediterranean). Fisheries Research 105: 46–56.CrossRefGoogle Scholar
  32. Ligas, A., P. Sartor & F. Colloca, 2011. Trends in population dynamics and fishery of Parapenaeus longirostris and Nephrops norvegicus in the Tyrrhenian Sea (NW Mediterranean): identifying the relative importance of fishery and environmental variables. Marine Ecology 32(Suppl. 1): 25–35.CrossRefGoogle Scholar
  33. Maiorano, P., L. Sion, R. Carlucci, F. Capezzuto, A. Giove, G. Costantino, M. Panza, G. D’Onghia & A. Tursi, 2010. The demersal faunal assemblage of the north-western Ionian Sea (central Mediterranean): current knowledge and perspectives. Chemistry and Ecology 26: 219–240.CrossRefGoogle Scholar
  34. Margalef, R., 1985. Key Environments: Western Mediterranean. Pergamon Press Ltd., Oxford.Google Scholar
  35. Marra, A., S. Mona, R. M. Sà, G. D’Onghia & P. Maiorano, 2015. Population Genetic History of Aristeus antennatus (Crustacea: Decapoda) in the Western and Central Mediterranean Sea. PLoS ONE. Scholar
  36. Marullo, S., B. Buongiorno Nardelli, M. Guarracino & R. Santoleri, 2007. Observing the Mediterranean Sea from space: 21 years of Pathfinder-AVHRR sea surface temperatures (1985–2005). Re-analysis and validation. Ocean Science 3: 299–310.CrossRefGoogle Scholar
  37. Maynou, F., 2008. Environmental causes of the fluctuations of red shrimp (Aristeus antennatus) landings in the Catalan Sea. Journal of Marine Systems 71: 294–302.CrossRefGoogle Scholar
  38. Maynou, F., M. Sbrana, P. Sartor, C. Maravelias, S. Kavadas, D. Damalas, J. E. Cartes & G. C. Osio, 2011. Estimating trends of population decline in long-lived marine species in the mediterranean sea based on fishers’ perceptions. PLoS ONE 6(7): e21818. Scholar
  39. Merrett, N. R. & R. L. Haedrich, 1997. Deep-Sea Demersal Fish and Fisheries. Chapman & Hall, London.Google Scholar
  40. Morato, T., R. Watson, T. J. Pitcher & D. Pauly, 2006. Fishing down the deep. Fish and Fisheries 7: 24–34.CrossRefGoogle Scholar
  41. Moranta, J., A. Quetglas, E. Massutí, B. Guijarro, M. Hidalgo & P. Diaz, 2008. Spatio-temporal variations in deep-sea demersal communities off the Balearic Islands (western Mediterranean). Journal of Marine Systems 71: 346–366.CrossRefGoogle Scholar
  42. Orfila, A., A. Alvarez, J. Tintoré, A. Jordi & G. Basterrectxea, 2005. Climate tele-connections at monthly time scales in the Ligurian Sea inferred from satellite data. Progress in Oceanography 66: 157–170.CrossRefGoogle Scholar
  43. Orsi Relini, L., A. Mannini & G. Relini, 2013. Updating knowledge on growth, population dynamics, and ecology of the blue and red shrimp, Aristeus antennatus (Risso, 1816), on the basis of the study of its instars. Marine Ecology 34: 90–102.CrossRefGoogle Scholar
  44. Pankhurst, N. W. & P. L. Munday, 2011. Effects of climate change on fish reproduction and early life history stages. Marine and Freshwater Research 62(9): 1015–1026.CrossRefGoogle Scholar
  45. Perry, A. L., P. J. Low, J. R. Ellis & J. D. Reynolds, 2005. Climate change and distribution shifts in marine fishes. Science 308: 1912–1915.CrossRefPubMedGoogle Scholar
  46. Politou, C.-Y., K. Kapiris, P. Maiorano, F. Capezzuto & J. Dokos, 2004. Deep-sea Mediterranean biology: the case of Aristaeomorpha foliacea (Risso, 1827) (Crustacea: Decapoda: Aristeidae). Scientia Marina 68(Suppl. 3): 129–139.Google Scholar
  47. R Core Team, 2017. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.Google Scholar
  48. Relini, G., 2007. Bathyal fisheries in the Ligurian Sea. Biologia Marina Mediterranea 14(2): 190–244.Google Scholar
  49. Roberts, C. M., 2002. Deep impact: the rising toll of fishing in the deep sea. Trends in Ecology and Evolution 17: 242–245.CrossRefGoogle Scholar
  50. Rothschild, B. J., C. Chen & R. G. Lough, 2005. Managing fish stocks under climate uncertainty. ICES Journal of Marine Science 62: 1531–1541.CrossRefGoogle Scholar
  51. Sardà, F., G. D’Onghia, C.-Y. Politou, J. B. Company, P. Maiorano & K. Kapiris, 2004. Deep-sea distribution, biological and ecological aspects of Aristeus antennatus (Risso, 1816) in the western and central Mediterranean Sea. Scientia Marina 68(Suppl. 3): 117–127.CrossRefGoogle Scholar
  52. Sardà, F., M. I. Roldán, S. Heras & F. Maltagliati, 2010. Influence of the genetic structure of the red and blue shrimp, Aristeus antennatus (Risso, 1816), on the sustainability of a deep-sea population along a depth gradient in the western Mediterranean. Scientia Marina 74(Suppl. 3): 569–575.Google Scholar
  53. Shaltout, M. & A. Omstedt, 2014. Recent sea surface temperature trends and future scenarios for the Mediterranean Sea. Oceanologia 56(3): 411–443.CrossRefGoogle Scholar
  54. Sobrino, I., N. Dias, I. Munoz, F. Salmerón & D. Varela, 2009. Distribution patterns and biological characteristics of Aristeus antennatus (Risso, 1816) and Aristeus virilise (Bate, 1881) in Mozambique Waters of the Western Indian Ocean. Western Indian Ocean Journal of Marine Science 8: 49–59.Google Scholar
  55. Sparre, P., S.C. Venema, 1992. Introduction to tropical fish stock assessment. FAO Fish. Tech. Pap. 306. FAO, RomeGoogle Scholar
  56. STECF, 2015. Mediterranean assessments part 1 (STECF-15-18). 2015. EUR 27638 EN, JRC 98676. Publications Office of the European Union, LuxembourgGoogle Scholar
  57. Zuur, A. F., E. N. Ieno, N. J. Walker, A. A. Saveliev & G. M. Smith, 2009. Mixed effects models and extensions in ecology with R. Springer, New York.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Centro Interuniversitario di Biologia Marina ed Ecologia ApplicataLeghornItaly
  2. 2.Dipartimento di Biologia AmbientaleUniversity “La Sapienza” RomeRomeItaly
  3. 3.Dipartimento di Scienze della Terra dell’Ambiente e della VitaUniversity of GenoaGenoaItaly
  4. 4.Unit D.02 Water and Marine Resources, Directorate D – Sustainable ResourcesEC Joint Research Centre (JRC)IspraItaly

Personalised recommendations