Skip to main content
Log in

The complete mitochondrial genome of Gammarus roeselii (Crustacea, Amphipoda): insights into mitogenome plasticity and evolution

  • CRUSTACEAN GENOMICS
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

This study presents the complete mitochondrial (mt) genome sequence, annotation and analysis of the amphipod Gammarus roeselii, a crustacean species widespread in European continental freshwaters. The circular mt genome has a total length of 16,073 bp and possesses the 37 canonical mt genes of bilaterians. Particularly noticeable is an unusual case of duplication of the full control region (CR). This duplication was confirmed experimentally in G. roeselii individuals caught in the wild, as it was found in all tested individuals from two distinct populations. Furthermore, comparing multiple mt haplotypes from closely related individuals from the western-most part of the distribution range of G. roeselii allowed us to identify single nucleotide polymorphisms and indels that may constitute valuable markers for phylogeographic analyses of G. roeselii. Finally, we performed a phylogenetic analysis that helped understanding the evolutionary dynamics of the CR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abbott, C. L., M. C. Double, J. W. H. Trueman, A. Robinson & A. Cockburn, 2005. An unusual source of apparent mitochondrial heteroplasmy: duplicate mitochondrial control regions in Thalassarche albatrosses. Molecular Ecology 14: 3605–3613.

    CAS  PubMed  Google Scholar 

  • Altschul, S. F., W. Gish, W. Miller, E. W. Myers & D. J. Lipman, 1990. Basic local alignment search tool. Journal of Molecular Biology 215: 403–410.

    CAS  PubMed  Google Scholar 

  • Andreï, J., S. Pain-Devin, V. Felten, S. Devin, L. Giambérini, K. Mehennaoui, S. Cambier, A. C. Gutleb & F. Guérold, 2016. Silver nanoparticles impact the functional role of Gammarus roeseli (Crustacea Amphipoda). Environmental Pollution 208: 608–618.

    PubMed  Google Scholar 

  • Arndt, A. & M. J. Smith, 1998. Mitochondrial gene rearrangement in the sea cucumber genus Cucumaria. Molecular Biology and Evolution 15: 1009–1016.

    CAS  PubMed  Google Scholar 

  • Aunins, A. W., D. L. Nelms, C. S. Hobson & T. L. King, 2016. Comparative mitogenomic analyses of three North American stygobiont amphipods of the genus Stygobromus (Crustacea: Amphipoda). Mitochondrial DNA Part B 1: 560–563.

    PubMed  PubMed Central  Google Scholar 

  • Bauzà-Ribot, M. M., D. Jaume, C. Juan & J. Pons, 2009. The complete mitochondrial genome of the subterranean crustacean Metacrangonyx longipes (Amphipoda): a unique gene order and extremely short control region. Mitochondrial DNA 20: 88–99.

    PubMed  Google Scholar 

  • Bauzà-Ribot, M. M., C. Juan, F. Nardi, P. Oromí, J. Pons & D. Jaume, 2012. Mitogenomic phylogenetic analysis supports continental-scale vicariance in subterranean Thalassoid crustaceans. Current Biology 22: 2069–2074.

    PubMed  Google Scholar 

  • Bernt, M., A. Donath, F. Jühling, F. Externbrink, C. Florentz, G. Fritzsch, J. Pütz, M. Middendorf & P. F. Stadler, 2013. MITOS: improved de novo metazoan mitochondrial genome annotation. Mitogenomics and Metazoan Evolution 69: 313–319.

    Google Scholar 

  • Black 4th, W. C. & R. L. Roehrdanz, 1998. Mitochondrial gene order is not conserved in arthropods: prostriate and metastriate tick mitochondrial genomes. Molecular Biology and Evolution 15: 1772–1785.

    CAS  PubMed  Google Scholar 

  • Bolger, A. M., M. Lohse & B. Usadel, 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30: 2114–2120.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boore, J. L., 1999. Animal mitochondrial genomes. Nucleic Acids Research 27: 1767–1780.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boore, J. L., 2000. The Duplication/Random Loss Model for Gene Rearrangement Exemplified by Mitochondrial Genomes of Deuterostome Animals. In Sankoff, D. & J. H. Nadeau (eds.), Comparative Genomics: Empirical and Analytical Approaches to Gene Order Dynamics, Map Alignment and the Evolution of Gene Families. Springer, Dordrecht: 133–147.

    Google Scholar 

  • Boore, J. L., D. V. Lavrov & W. M. Brown, 1998. Gene translocation links insects and crustaceans. Nature 392: 667.

    CAS  PubMed  Google Scholar 

  • Böttger, R., J. Schaller & S. Mohr, 2012. Closer to reality—the influence of toxicity test modifications on the sensitivity of Gammarus roeseli to the insecticide imidacloprid. Ecotoxicology and Environmental Safety 81: 49–54.

    PubMed  Google Scholar 

  • Campbell, N. J. & S. C. Barker, 1999. The novel mitochondrial gene arrangement of the cattle tick, Boophilus microplus: fivefold tandem repetition of a coding region. Molecular Biology and Evolution 16: 732–740.

    CAS  PubMed  Google Scholar 

  • Chandler, C. H., M. Badawi, B. Moumen, P. Grève & R. Cordaux, 2015. Multiple conserved heteroplasmic sites in tRNA genes in the mitochondrial genomes of terrestrial isopods (Oniscidea). G3: Genes|Genomes|Genetics 5: 1317.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Darriba, D., G. L. Taboada, R. Doallo & D. Posada, 2012. jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9: 772.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dierckxsens, N., P. Mardulyn & G. Smits, 2017. NOVOPlasty: de novo assembly of organelle genomes from whole genome data. Nucleic Acids Research 45: e18.

    PubMed  Google Scholar 

  • Doublet, V., Q. Helleu, R. Raimond, C. Souty-Grosset & I. Marcadé, 2013. Inverted repeats and genome architecture conversions of terrestrial isopods mitochondrial DNA. Journal of Molecular Evolution 77: 107–118.

    CAS  PubMed  Google Scholar 

  • Dubey, B., P. R. Meganathan & I. Haque, 2012. Complete mitochondrial genome sequence from an endangered Indian snake, Python molurus (Serpentes, Pythonidae). Molecular Biology Reports 39: 7403–7412.

    CAS  PubMed  Google Scholar 

  • Gergs, R., L. Schlag & K.-O. Rothhaupt, 2013. Different ammonia tolerances may facilitate spatial coexistence of Gammarus roeselii and the strong invader Dikerogammarus villosus. Biological Invasions 15: 1783–1793.

    Google Scholar 

  • Gerhardt, A., M. Bloor & C. Lloyd Mills, 2011. Gammarus: important taxon in freshwater and marine changing environments. International Journal of Zoology 2011: 2.

    Google Scholar 

  • Gismondi, E. & J. P. Thomé, 2016. Transcriptome of the freshwater amphipod Gammarus pulex hepatopancreas. Genomics Data 8: 91–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gismondi, E., J.-N. Beisel & C. Cossu-Leguille, 2012a. Polymorphus minutus affects antitoxic responses of Gammarus Roeseli exposed to cadmium. PLoS ONE 7: e41475.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gismondi, E., C. Cossu-Leguille & J.-N. Beisel, 2012b. Acanthocephalan parasites: help or burden in gammarid amphipods exposed to cadmium? Ecotoxicology 21: 1188–1193.

    CAS  PubMed  Google Scholar 

  • Gismondi, E., T. Rigaud, J.-N. Beisel & C. Cossu-Leguille, 2012c. Microsporidia parasites disrupt the responses to cadmium exposure in a gammarid. Environmental Pollution 160: 17–23.

    CAS  PubMed  Google Scholar 

  • Gismondi, E., C. Cossu-Leguille & J.-N. Beisel, 2013. Do male and female gammarids defend themselves differently during chemical stress? Aquatic Toxicology 140–141: 432–438.

    PubMed  Google Scholar 

  • Grabowski, M., K. Jazdzewski & A. Konopacka, 2007. Alien crustacea in polish waters—Amphipoda. Aquatic Invasions 2: 25–38.

    Google Scholar 

  • Grabowski, M., T. Mamos, K. Bącela-Spychalska, T. Rewicz & R. A. Wattier, 2017. Neogene paleogeography provides context for understanding the origin and spatial distribution of cryptic diversity in a widespread Balkan freshwater amphipod. PeerJ 5: e3016.

    PubMed  PubMed Central  Google Scholar 

  • Haine, E. R., K. Boucansaud & T. Rigaud, 2005. Conflict between parasites with different transmission strategies infecting an amphipod host. Proceedings of the Royal Society B: Biological Sciences 272: 2505.

    PubMed  PubMed Central  Google Scholar 

  • Hassanin, A., N. Léger & J. Deutsch, 2005. Evidence for multiple reversals of asymmetric mutational constraints during the evolution of the mitochondrial genome of metazoa, and consequences for phylogenetic inferences. Systematic Biology 54: 277–298.

    PubMed  Google Scholar 

  • Hou, Z. & B. Sket, 2016. A review of Gammaridae (Crustacea: Amphipoda): the family extent, its evolutionary history, and taxonomic redefinition of genera. Zoological Journal of the Linnean Society 176: 323–348.

    Google Scholar 

  • Hou, Z., B. Sket, C. Fišer & S. Li, 2011. Eocene habitat shift from saline to freshwater promoted Tethyan amphipod diversification. Proceedings of the National Academy of Sciences 108: 14533.

    CAS  Google Scholar 

  • Ito, A., M. N. Aoki, S. Yokobori & H. Wada, 2010. The complete mitochondrial genome of Caprella scaura (Crustacea, Amphipoda, Caprellidea), with emphasis on the unique gene order pattern and duplicated control region. Mitochondrial DNA 21: 183–190.

    CAS  PubMed  Google Scholar 

  • Jażdżewski, K. & A.-L. Roux, 1988. Biogéographie de Gammarus roeseli Gervais en Europe, en particulier répartition en France et en Pologne. Crustaceana 13: 272–277.

    Google Scholar 

  • Kao, D., A. G. Lai, E. Stamataki, S. Rosic, N. Konstantinides, E. Jarvis, A. Di Donfrancesco, N. Pouchkina-Stancheva, M. Sémon, M. Grillo, H. Bruce, S. Kumar, I. Siwanowicz, A. Le, A. Lemire, M. B. Eisen, C. Extavour, W. E. Browne, C. Wolff, M. Averof, N. H. Patel, P. Sarkies, A. Pavlopoulos & A. Aboobaker, 2016. The genome of the crustacean Parhyale hawaiensis, a model for animal development, regeneration, immunity and lignocellulose digestion. eLife 5: e20062.

    PubMed  PubMed Central  Google Scholar 

  • Karaman, G. S., & S. Pinkster, 1977. Freshwater Gammarus Species from Europe, North Africa and Adjacent Regions of Asia (Crustacea-Amphipoda). Commissie voor de artis bibliotheek, https://books.google.fr/books?id=sBPlNAAACAAJ.

  • Katoh, K. & D. M. Standley, 2013. MAFFT Multiple Sequence Alignment Software Version 7: improvements in performance and usability. Molecular Biology and Evolution 30: 772–780.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ki, J.-S., H. Hop, S.-J. Kim, I.-C. Kim, H. G. Park & J.-S. Lee, 2010. Complete mitochondrial genome sequence of the Arctic gammarid, Onisimus nanseni (Crustacea; Amphipoda): novel gene structures and unusual control region features. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics 5: 105–115.

    Google Scholar 

  • Kilpert, F. & L. Podsiadlowski, 2010. The mitochondrial genome of the Japanese skeleton shrimp Caprella mutica (Amphipoda: Caprellidea) reveals a unique gene order and shared apomorphic translocations with Gammaridea. Mitochondrial DNA 21: 77–86.

    CAS  PubMed  Google Scholar 

  • Krebes, L. & R. Bastrop, 2012. The mitogenome of Gammarus duebeni (Crustacea Amphipoda): a new gene order and non-neutral sequence evolution of tandem repeats in the control region. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics 7: 201–211.

    CAS  Google Scholar 

  • Kück, P. & G. C. Longo, 2014. FASconCAT-G: extensive functions for multiple sequence alignment preparations concerning phylogenetic studies. Frontiers in Zoology 11: 81.

    PubMed  PubMed Central  Google Scholar 

  • Kumazawa, Y., H. Ota, M. Nishida & T. Ozawa, 1996. Gene rearrangements in snake mitochondrial genomes: highly concerted evolution of control-region-like sequences duplicated and inserted into a tRNA gene cluster. Molecular Biology and Evolution 13: 1242–1254.

    CAS  PubMed  Google Scholar 

  • Kumazawa, Y., H. Ota, M. Nishida & T. Ozawa, 1998. The complete nucleotide sequence of a snake (Dinodon semicarinatus) mitochondrial genome with two identical control regions. Genetics 150: 313.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lan, Y., J. Sun, D. H. Bartlett, G. W. Rouse, H. G. Tabata & P.-Y. Qian, 2016. The deepest mitochondrial genome sequenced from Mariana Trench Hirondellea gigas (Amphipoda). Mitochondrial DNA Part B 1: 802–803.

    PubMed  PubMed Central  Google Scholar 

  • Langmead, B. & S. L. Salzberg, 2012. Fast gapped-read alignment with Bowtie 2. Nature Methods 9: 357.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, J.-S., M. Miya, Y.-S. Lee, C. G. Kim, E.-H. Park, Y. Aoki & M. Nishida, 2001. The complete DNA sequence of the mitochondrial genome of the self-fertilizing fish Rivulus marmoratus (Cyprinodontiformes, Rivulidae) and the first description of duplication of a control region in fish. Gene 280: 1–7.

    CAS  PubMed  Google Scholar 

  • Li, D.-H., W. Shi, T. A. Munroe, L. Gong & X.-Y. Kong, 2015. Concerted evolution of duplicate control regions in the mitochondria of species of the flatfish family Bothidae (Teleostei: Pleuronectiformes). PLoS ONE 10: e0134580.

    PubMed  PubMed Central  Google Scholar 

  • Liao, D., 1999. Concerted evolution: molecular mechanism and biological implications. American Journal of Human Genetics 64: 24–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lunt, D. H. & B. C. Hyman, 1997. Animal mitochondrial DNA recombination. Nature 387: 247.

    CAS  PubMed  Google Scholar 

  • Luo, R., B. Liu, Y. Xie, Z. Li, W. Huang, J. Yuan, G. He, Y. Chen, Q. Pan, Y. Liu, J. Tang, G. Wu, H. Zhang, Y. Shi, Y. Liu, C. Yu, B. Wang, Y. Lu, C. Han, D. W. Cheung, S.-M. Yiu, S. Peng, Z. Xiaoqian, G. Liu, X. Liao, Y. Li, H. Yang, J. Wang, T.-W. Lam & J. Wang, 2012. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. GigaScience 1: 1–6.

    Google Scholar 

  • Macher, J. N., F. Leese, A. M. Weigand & A. Rozenberg, 2017a. The complete mitochondrial genome of a cryptic amphipod species from the Gammarus fossarum complex. Mitochondrial DNA Part B 2: 17–18.

    PubMed  PubMed Central  Google Scholar 

  • Macher, J. N., V. Zizka, A. M. Weigand, & F. Leese, 2017b. A simple centrifugation protocol increases mitochondrial DNA yield 140-fold and facilitates mitogenomic studies. bioRxiv, http://biorxiv.org/content/early/2017/03/23/106583.abstract.

  • Maddock, S. T., A. G. Briscoe, M. Wilkinson, A. Waeschenbach, D. San Mauro, J. J. Day, D. T. J. Littlewood, P. G. Foster, R. A. Nussbaum & D. J. Gower, 2016. Next-generation mitogenomics: a comparison of approaches applied to Caecilian amphibian phylogeny. PLoS ONE 11: e0156757.

    PubMed  PubMed Central  Google Scholar 

  • Marcadé, I., R. Cordaux, V. Doublet, C. Debenest, D. Bouchon & R. Raimond, 2007. Structure and evolution of the atypical mitochondrial genome of Armadillidium vulgare (Isopoda, Crustacea). Journal of Molecular Evolution 65: 651–659.

    PubMed  Google Scholar 

  • Meimberg, H., C. Schachtler, M. Curto, M. Husemann & J. C. Habel, 2016. A new amplicon based approach of whole mitogenome sequencing for phylogenetic and phylogeographic analysis: an example of East African white-eyes (Aves, Zosteropidae). Molecular Phylogenetics and Evolution 102: 74–85.

    CAS  PubMed  Google Scholar 

  • Moret, Y., L. Bollache, R. Wattier & T. Rigaud, 2007. Is the host or the parasite the most locally adapted in an amphipod–acanthocephalan relationship? A case study in a biological invasion context. International Journal for Parasitology 37: 637–644.

    PubMed  Google Scholar 

  • Morris-Pocock, J. A., S. A. Taylor, T. P. Birt & V. L. Friesen, 2010. Concerted evolution of duplicated mitochondrial control regions in three related seabird species. BMC Evolutionary Biology 10: 14.

    PubMed  PubMed Central  Google Scholar 

  • Ogoh, K. & Y. Ohmiya, 2004. Complete mitochondrial DNA sequence of the sea-firefly, Vargula hilgendorfii (Crustacea, Ostracoda) with duplicate control regions. Gene 327: 131–139.

    CAS  PubMed  Google Scholar 

  • Paganelli, D., A. Gazzola, A. Marchini & R. Sconfietti, 2015. The increasing distribution of Gammarus roeselii Gervais, 1835: First record of the non-indigenous freshwater amphipod in the sub-lacustrine Ticino River basin. Lombardy, Italy.

    Google Scholar 

  • Parham, J. F., C. R. Feldman & J. L. Boore, 2006a. The complete mitochondrial genome of the enigmatic bigheaded turtle (Platysternon): description of unusual genomic features and the reconciliation of phylogenetic hypotheses based on mitochondrial and nuclear DNA. BMC Evolutionary Biology 6: 11.

    PubMed  PubMed Central  Google Scholar 

  • Parham, J. F., J. R. Macey, T. J. Papenfuss, C. R. Feldman, O. Türkozan, R. Polymeni & J. Boore, 2006b. The phylogeny of Mediterranean tortoises and their close relatives based on complete mitochondrial genome sequences from museum specimens. Molecular Phylogenetics and Evolution 38: 50–64.

    CAS  PubMed  Google Scholar 

  • Peccoud, J., M. A. Chebbi, A. Cormier, B. Moumen, C. Gilbert, I. Marcadé, C. Chandler & R. Cordaux, 2017. Untangling heteroplasmy, structure, and evolution of an atypical mitochondrial genome by PacBio Sequencing. Genetics 207: 269.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peng, Q.-L., L.-W. Nie & Y.-G. Pu, 2006. Complete mitochondrial genome of Chinese big-headed turtle, Platysternon megacephalum, with a novel gene organization in vertebrate mtDNA. Gene 380: 14–20.

    CAS  PubMed  Google Scholar 

  • Piscart, C., D. Webb & J. N. Beisel, 2007. An acanthocephalan parasite increases the salinity tolerance of the freshwater amphipod Gammarus roeseli (Crustacea: Gammaridae). Naturwissenschaften 94: 741–747.

    CAS  PubMed  Google Scholar 

  • Pons, J., M. M. Bauzà-Ribot, D. Jaume & C. Juan, 2014. Next-generation sequencing, phylogenetic signal and comparative mitogenomic analyses in Metacrangonyctidae (Amphipoda: Crustacea). BMC Genomics 15: 566.

    PubMed  PubMed Central  Google Scholar 

  • Rius, M., S. Bourne, H. G. Hornsby & M. A. Chapman, 2015. Applications of next-generation sequencing to the study of biological invasions. Current Zoology 61: 488–504.

    Google Scholar 

  • Romanova, E. V., V. V. Aleoshin, R. M. Kamaltynov, K. V. Mikhailov, M. D. Logacheva, E. A. Sirotinina, A. Y. Gornov, A. S. Anikin & D. Y. Sherbakov, 2016a. Evolution of mitochondrial genomes in Baikalian amphipods. BMC Genomics 17: 1016.

    PubMed  PubMed Central  Google Scholar 

  • Romanova, E. V., K. V. Mikhailov, M. D. Logacheva, R. M. Kamaltynov, V. V. Aleoshin & D. Y. Sherbakov, 2016b. The complete mitochondrial genome of a deep-water Baikalian amphipoda Brachyuropus grewingkii (Dybowsky, 1874). Mitochondrial DNA Part A 27: 4158–4159.

    CAS  Google Scholar 

  • Romanova, E. V., K. V. Mikhailov, M. D. Logacheva, R. M. Kamaltynov, V. V. Aleoshin & D. Y. Sherbakov, 2016c. The complete mitochondrial genome of Baikalian amphipoda Eulimnogammarus vittatus Dybowsky, 1874. Mitochondrial DNA Part A 27: 1795–1797.

    CAS  Google Scholar 

  • Ronquist, F. & J. P. Huelsenbeck, 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572–1574.

    CAS  PubMed  Google Scholar 

  • Saito, S., K. Tamura & T. Aotsuka, 2005. Replication origin of mitochondrial DNA in insects. Genetics 171: 1695.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schirtzinger, E. E., E. S. Tavares, L. A. Gonzales, J. R. Eberhard, C. Y. Miyaki, J. J. Sanchez, A. Hernandez, H. Müeller, G. R. Graves, R. C. Fleischer & T. F. Wright, 2012. Multiple independent origins of mitochondrial control region duplications in the order Psittaciformes. Molecular Phylogenetics and Evolution 64: 342–356.

    PubMed  PubMed Central  Google Scholar 

  • Shao, R., S. C. Barker, H. Mitani, Y. Aoki & M. Fukunaga, 2005. Evolution of duplicate control regions in the mitochondrial genomes of metazoa: a case study with Australasian Ixodes ticks. Molecular Biology and Evolution 22: 620–629.

    CAS  PubMed  Google Scholar 

  • Shi, W., X.-G. Miao & X.-Y. Kong, 2014. A novel model of double replications and random loss accounts for rearrangements in the Mitogenome of Samariscus latus (Teleostei: Pleuronectiformes). BMC Genomics 15: 352.

    PubMed  PubMed Central  Google Scholar 

  • Shin, S. C., J. Cho, J. K. Lee, D. H. Ahn, H. Lee & H. Park, 2012. Complete mitochondrial genome of the Antarctic amphipod Gondogeneia antarctica (Crustacea, amphipod). Mitochondrial DNA 23: 25–27.

    CAS  PubMed  Google Scholar 

  • Skujina, I., R. McMahon, V. P. E. Lenis, G. V. Gkoutos & M. Hegarty, 2016. Duplication of the mitochondrial control region is associated with increased longevity in birds. Aging (Albany NY) 8: 1781–1788.

    CAS  Google Scholar 

  • Sornom, P., V. Felten, V. Médoc, S. Sroda, P. Rousselle & J.-N. Beisel, 2010. Effect of gender on physiological and behavioural responses of Gammarus roeseli (Crustacea Amphipoda) to salinity and temperature. Environmental Pollution 158: 1288–1295.

    CAS  PubMed  Google Scholar 

  • Stokkan, M., J. A. Jurado-Rivera, C. Juan, D. Jaume & J. Pons, 2016. Mitochondrial genome rearrangements at low taxonomic levels: three distinct mitogenome gene orders in the genus Pseudoniphargus (Crustacea: Amphipoda). Mitochondrial DNA Part A 27: 3579–3589.

    CAS  Google Scholar 

  • Tain, L., M.-J. Perrot-Minnot & F. Cézilly, 2007. Differential influence of Pomphorhynchus laevis (Acanthocephala) on brain serotonergic activity in two congeneric host species. Biology Letters 3: 69.

    Google Scholar 

  • Tatarenkov, A. & J. C. Avise, 2007. Rapid concerted evolution in animal mitochondrial DNA. Proceedings of the Royal Society B: Biological Sciences 274: 1795.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Trapp, J., J. Armengaud, J.-C. Gaillard, O. Pible, A. Chaumot & O. Geffard, 2016. High-throughput proteome dynamics for discovery of key proteins in sentinel species: unsuspected vitellogenins diversity in the crustacean Gammarus fossarum. Journal of Proteomics 146: 207–214.

    CAS  PubMed  Google Scholar 

  • Väinölä, R., J. D. S. Witt, M. Grabowski, J. H. Bradbury, K. Jazdzewski & B. Sket, 2008. Global diversity of amphipods (Amphipoda; Crustacea) in freshwater. Hydrobiologia 595: 241–255.

    Google Scholar 

  • van Rijk, A. & H. Bloemendal, 2003. Molecular mechanisms of exon shuffling: illegitimate recombination. Genetica 118: 245–249.

    PubMed  Google Scholar 

  • Wei, S.-J., M. Shi, X.-X. Chen, M. J. Sharkey, C. van Achterberg, G.-Y. Ye & J.-H. He, 2010. New views on strand asymmetry in insect mitochondrial genomes. PLoS ONE 5: e12708.

    PubMed  PubMed Central  Google Scholar 

  • Wu, F., L. Kumagai, Y. Cen, J. Chen, C. M. Wallis, M. Polek, H. Jiang, Z. Zheng, G. Liang & X. Deng, 2017. Analyses of mitogenome sequences revealed that Asian Citrus Psyllids (Diaphorina citri) from California were related to those from florida. Scientific Reports 7: 10154.

    PubMed  PubMed Central  Google Scholar 

  • Yang, J., F. Ye & Y. Huang, 2016. Mitochondrial genomes of four katydids (Orthoptera: Phaneropteridae): New gene rearrangements and their phylogenetic implications. Gene 575: 702–711.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Isabelle Giraud for preparation of DNA samples used for sequencing, Amine Chebbi and Bouziane Moumen for assistance with bioinformatic analyses, Clément Gilbert for discussions, and the Roscoff Bioinformatics platform ABiMS (http://abims.sb-roscoff.fr) for providing additional computational resources. We also thank the editors and reviewers for their comments on an earlier version of the manuscript. This work was funded by Agence Nationale de la Recherche Grant ANR-15-CE32-0006 (CytoSexDet), Centre National de la Recherche Scientifique (CNRS) PEPS ExoMod Grant (MicroFem) to R.C. and T.R., the 2015–2020 State-Region Planning Contract and European Regional Development Fund, and intramural funds from the CNRS and the University of Poitiers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Cordaux.

Additional information

Guest editors: Guiomar Rotllant, Ferran Palero, Peter Mather, Heather Bracken-Grissom & Begoña Santos / Crustacean Genomics

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cormier, A., Wattier, R., Teixeira, M. et al. The complete mitochondrial genome of Gammarus roeselii (Crustacea, Amphipoda): insights into mitogenome plasticity and evolution. Hydrobiologia 825, 197–210 (2018). https://doi.org/10.1007/s10750-018-3578-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-018-3578-z

Keywords

Navigation