Sensory signals and the reaction space in predator–prey interactions

Primary Research Paper


Non-consumptive effects of predators (NCEs) often occur when prey alter their behavior in response to sensory signals indicative of predatory threats. The purpose of this study was to assess how the reaction to predation risk by prey changes with environmental context and predator hunting mode. We placed prey (crayfish) in two different environments (flow and no flow) in one of the three predator treatments (active predator [bass], sit-and-wait predator [catfish], no predator) and monitored the behavior of the crayfish in a resource patchy environment. Crayfish rely on chemically mediated behaviors including foraging, agonistic, and predator detection, and inhabit flow and no flow environments. Our results show predator hunting mode changes prey behavior, but only in flow water that would enhance the transmission of predator cues. The most significant interaction between predator treatment and environmental conditions was found with the active predator in flow habitats, but changes in stimulus transmission dynamics did not alter NCEs from a sit-and-wait predator.


Reaction space Non-consumptive effects Hunting mode Environmental transmission 



We would like to thank members of the Laboratory for Sensory Ecology for their assistance in experimental setup and review of the manuscript. We thank the University of Michigan Biological Station for funding this research through the Marian P. and David M. Gates Graduate Student Fund and for the use of the Stream Research Facility. We thank Harrietta Hills Trout Farm LLC for working with us to obtain the fish for this study. We thank all those who assisted in animal collection for this study. We would like to thank the reviewers for their careful reading of this manuscript and their thoughtful ideas for revisions.


  1. Adams, S. B., 2007. Direct and indirect effects of channel catfish (Ictalurus punctatus) on native crayfishes (Cambaridae) in experimental tanks. The American Midland Naturalist 158: 85–96.CrossRefGoogle Scholar
  2. Bates, D., M. Maechler, B. Bolker & S. Walker, 2015. Fitting linear mixed-effects models using lme4. Journal of Statistical Software 67(1): 1–48.CrossRefGoogle Scholar
  3. Bergman, D. A., C. P. Kozlowski, J. C. McIntyre, R. Huber, A. G. Daws & P. A. Moore, 2003. Temporal dynamics and communication of winner-effects in the crayfish, Orconectes rusticus. Behaviour 140: 805–825.CrossRefGoogle Scholar
  4. Bergman, D. A., C. N. Redman, K. C. Fero, J. L. Simon & P. A. Moore, 2006. The impacts of flow on chemical communication strategies and fight dynamics of crayfish. Marine and Freshwater Behavior and Physiology 39: 245–258.CrossRefGoogle Scholar
  5. Boonstra, R., D. Hik, G. Singleton & A. Tinnikov, 1998. The impact of predator-induced stress on the snowshoe hare cycle. Ecological Monographs 68: 371–394.CrossRefGoogle Scholar
  6. Bytheway, J. P., A. J. K. Carthey & P. B. Banks, 2013. Risk vs. reward: how predators and prey respond to aging olfactory cues. Behavioral Ecology and Sociobiology 67: 715–725.CrossRefGoogle Scholar
  7. Callaghan, D. T., C. D. Weisbor, W. A. Dew & G. G. Pyle, 2012. The role of various sensory inputs in establishing social hierarchies in crayfish. Behaviour 149: 1443–1458.CrossRefGoogle Scholar
  8. Chivers, D. P., E. L. Wildy, J. M. Kiesecker & A. R. Blaustein, 2001. Avoidance response of juvenile pacific treefrogs to chemical cues of introduced predatory bullfrogs. Journal of Chemical Ecology 27: 1667–1676.CrossRefPubMedGoogle Scholar
  9. Corcoran, A. J., R. D. Wagner & W. E. Conner, 2013. Optimal predator risk assessment by the sonar-jamming Arctiine moth Bertholdia trigona. PLoS ONE 8: e63609.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Denny, M. W., 1993. Air and water: the biology and physics of life’s media. Princeton University Press, Princeton.Google Scholar
  11. Devereux, C. L., M. J. Whittingham, E. Fernández-Juricic, J. A. Vickery & J. R. Krebs, 2006. Predator detection and avoidance by starlings under differing scenarios of predation risk. Behavioral Ecology 17: 3003–3309.CrossRefGoogle Scholar
  12. Dill, L. M., 1987. Animal decision making and its ecological consequences: the future of aquatic ecology and behavior. Canadian Journal of Zoology 65: 803–811.CrossRefGoogle Scholar
  13. Dusenbery, D. B., 1992. Measuring information in Sensory Ecology. W.H. Freeman and Company, New York.Google Scholar
  14. Englund, G. & J. J. Krupa, 2000. Habitat use by crayfish in stream pools: influence of predators, depth and body size. Freshwater Biology 43: 75–83.CrossRefGoogle Scholar
  15. Ferner, M. C., D. L. Smee & M. J. Weissburg, 2009. Habitat complexity alters lethal and non-lethal olfactory interactions between predators and prey. Marine Ecology Progress Series 374: 13–22.CrossRefGoogle Scholar
  16. Fero, K. & P. A. Moore, 2008. Social spacing of crayfish in natural habitats: what role does dominance play? Behavioral Ecology and Sociobiology 62: 1119–1125.CrossRefGoogle Scholar
  17. Gall, B. G. & E. D. Brodie Jr., 2009. Behavioral avoidance of injured conspecific and predatory chemical stimuli by larvae of the aquatic caddisfly Hesperophylax occidentalis. Canadian Journal of Zoology 87: 1009–1015.CrossRefGoogle Scholar
  18. Garvey, J. E., R. A. Stein & H. M. Thomas, 1994. Assessing how fish predation and interspecific prey competition influence a crayfish assemblage. Ecology 75: 532–547.CrossRefGoogle Scholar
  19. Gherardi, F., P. Acquistapace, B. A. Hazlett & G. Whisson, 2002. Behavioural responses to danger odours in indigenous and non-indigenous crayfish species: a case study from Western Australia. Marine and Freshwater Research 53: 93–98.CrossRefGoogle Scholar
  20. Hazlett, B. A., 1999. Responses to multiple chemical cues by the crayfish Orconectes virilis. Behaviour 136: 161–177.CrossRefGoogle Scholar
  21. Hazlett, B. A., 2000. Information use by an invading species: do invaders respond more to alarm odors than native species. Biological Invasions 2: 289–294.CrossRefGoogle Scholar
  22. Hazlett, B. A., A. Burba, F. Gherardi & P. Acquistapace, 2003. Invasive species of crayfish use a broader range of predation-risk cues than native species. Biological Invasions 5: 223–228.CrossRefGoogle Scholar
  23. Hazlett, B. A., P. Acquistapace & F. Gherardi, 2006. Responses of the crayfish Orconectes virilis to chemical cues upon flow conditions. Journal of Crustacean Biology 26: 94–98.CrossRefGoogle Scholar
  24. Hemmi, J. M., 2005. Predator avoidance in fiddler crabs: 2. The visual cues. Animal Behavior 69: 615–625.CrossRefGoogle Scholar
  25. Huey, R. B. & E. R. Pianka, 1981. Ecological consequences of foraging mode. Ecology 62: 991–999.CrossRefGoogle Scholar
  26. Jurcak, A. M. & P. A. Moore, 2014. Behavioral decisions in sensory landscapes: Crayfish use chemical signals to make habitat use choices. Journal of Crustacean Biology 34: 559–564.CrossRefGoogle Scholar
  27. Keller, T. A. & P. A. Moore, 1999. Effects of ontogeny and odors on behavior: the influence of crayfish size and fish odors on crayfish movement. Marine and Freshwater Behaviour and Physiology 33: 35–50.CrossRefGoogle Scholar
  28. Keller, T. A., A. M. Tomba & P. A. Moore, 2001. Orientation in complex chemical landscapes: Spatial arrangement of chemical sources influences crayfish food-find efficiency in artificial streams. Limnology and Oceanography 46: 238–247.CrossRefGoogle Scholar
  29. Kuhlmann, M. L., S. M. Badylak & E. L. Carvin, 2008. Testing the differential predation hypothesis for the invasion of rusty crayfish in a stream community: laboratory and field experiments. Freshwater Biology 53: 113–128.Google Scholar
  30. Kuijper, D. P. J., C. de Kleine, M. Churki, P. van Hooft, J. Bubnicki & B. Jedrzejewska, 2013. Landscape of fear in Europe: wolves affect spatial patterns of ungulate browsing in Bialowieza Primeval Forest, Poland. Ecography 36: 001–013.CrossRefGoogle Scholar
  31. Kuznetsova, A., P. B. Brockhoff, & R. H. B. Christenesen, 2015. Package lmerTest. R package version 2.Google Scholar
  32. Large, S. I., D. L. Smee & G. C. Trussell, 2011. Environmental conditions influence the frequency of prey responses to predation risk. Marine Ecology Progress Series 422: 41–49.CrossRefGoogle Scholar
  33. Laundré, J. W., L. Hernández & K. B. Altendorf, 2001. Wolves, elk, and bison: reestablishing the “landscape of fear” in Yellowstone National Park, USA. Canadian Journal of Zoology 79: 1401–1409.CrossRefGoogle Scholar
  34. Laurila, A., J. Kyaselo & E. Rante, 1997. Different antipredator behavior in two anuran tadpoles: effects of predator diet. Behavioral Ecology and Sociobiology 40: 329–336.CrossRefGoogle Scholar
  35. Liao, J. C., 2007. A review of fish swimming mechanics and behavior in altered flows. Philosophical Transactions of the Royal Society 362: 1973–1993.CrossRefGoogle Scholar
  36. Lima, S. L., 1998. Nonlethal effects in the ecology of predator–prey interactions. Bioscience 48: 25–34.CrossRefGoogle Scholar
  37. Lima, S. L. & L. M. Dill, 1990. Behavioral decisions made under the risk of predation: A review and prospectus. Canadian Journal of Zoology 68: 619–640.CrossRefGoogle Scholar
  38. Lundvall, D., R. Svanbäck, L. Persson & P. Byström, 1999. Size-dependent predation in piscivores: Interactions between predator foraging and prey avoidance abilities. Canadian Journal of Fisheries and Aquatic Sciences 56: 1285–1292.CrossRefGoogle Scholar
  39. Marchesan, M., M. Spoto, L. Verginella & E. A. Ferrero, 2005. Behavioral effects of artificial light on fish species of commercial interest. Fisheries Research 73: 171–185.CrossRefGoogle Scholar
  40. Martin III, A. L. & P. A. Moore, 2008. The influence of dominance shelter preference and eviction rates in crayfish, Orconectes rusticus. Ethology 114: 351–360.CrossRefGoogle Scholar
  41. Matassa, C. M. & G. C. Trussell, 2011. Landscape of fear influences the relative importance of consumptive and nonconsumptive predator effects. Ecology 92: 2258–2266.CrossRefPubMedGoogle Scholar
  42. Miller, J. R. B., J. M. Ament & O. J. Schmitz, 2014. Fear on the move: Predator hunting mode predicts variation in prey mortality and plasticity in prey spatial response. Journal of Animal Ecology 83: 214–222.CrossRefPubMedGoogle Scholar
  43. Mirza, R. S. & D. P. Chivers, 2001. Chemical alarm signals enhance survival of brook char (Salvelinus fontinalis) during encounters with predatory chain pickerel (Esox niger). Ethology 107: 989–1005.CrossRefGoogle Scholar
  44. Moore, P. & J. Crimaldi, 2004. Odor landscapes and animal behavior: Tracking odor plumes in different physical worlds. Journal of Marine Systems 49: 55–64.CrossRefGoogle Scholar
  45. Moore, P. A., M. J. Weissburg, J. M. Parrish, R. K. Zimmer-Faust & G. A. Gerhardt, 1994. Spatial distribution of odors in simulated benthic boundary layer flows. Journal of Chemical Ecology 20: 255–279.CrossRefPubMedGoogle Scholar
  46. Moore, P. A., P. A. Ferrante & J. L. Bergner, 2015. Chemical orientation strategies of the crayfish are influences by the hydrodynamics of their native environment. The American Midland Naturalist 173: 17–29.CrossRefGoogle Scholar
  47. Neuwelier, G. & M. B. Fenton, 1988. Behaviour and foraging ecology of echolocating bats. In Nachtigall, P. E. & P. W. B. Moore (eds), Animal Sonar. Plenum, New York: 535–549.CrossRefGoogle Scholar
  48. Preisser, E. L., D. I. Bolnick & M. F. Bernad, 2005. Scared to death? The effects of intimidation and consumption in predator–prey interactions. Ecology 86: 501–509.CrossRefGoogle Scholar
  49. Preisser, E. L., J. L. Orrock & O. J. Schmitz, 2007. Predator hunting mode and habitat domain alter nonconsumptive effects in predator–prey interactions. Ecology 88: 2744–2751.CrossRefPubMedGoogle Scholar
  50. R Development Core Team, 2016. R: A language and environment for statistical computing. R Foundation for Statistical computing, Vienna, Austria.
  51. Rahel, F. J. & R. A. Stein, 1988. Complex predator-prey interactions and predator intimidation among crayfish, piscivorous fish, and small benthic fish. Oecologia 75(1): 94–98.CrossRefPubMedGoogle Scholar
  52. Relyea, R. A., 2000. Trait-mediated indirect effects in larval anurans: reversing competition with the threat of predation. Ecology 8: 2278–2289.CrossRefGoogle Scholar
  53. Resink, J. W., W. G. E. J. Schoonen, P. C. H. Albers, D. M. Filè, C. D. Notenboom, R. Van Den Hurk & P. G. W. J. Van Oordt, 1989. The chemical nature of sex attracting pheromones from the seminal vesicle of African catfish, Clarias gariepinus. Aquaculture 83: 137–151.CrossRefGoogle Scholar
  54. Ripple, W. J. & R. L. Beschta, 2004. Wolves, elk, willows, and trophic cascades in the upper Gallatin Range of Southwestern Montana, USA. Forest Ecology and Management 200: 161–181.CrossRefGoogle Scholar
  55. Rodrìguez, R. L., C. Haen, R. B. Cocroft & K. D. Fowler-Finn, 2012. Males adjust signaling effort based on female mate-preference cues. Behavioral Ecology 23: 1218–1225.CrossRefGoogle Scholar
  56. Scherer, A. E. & D. L. Smee, 2016. A review of predator diet effects on prey defensive responses. Chemoecology 26: 83–100.CrossRefGoogle Scholar
  57. Schmitz, O. J., 2005. Behavior of predators and prey links with population level processes. In Barbosa, P. & I. Castelianos (eds), Ecology of predator-prey interactions. Oxford University Press, Oxford, UK: 256–278.Google Scholar
  58. Schmitz, O. J., 2007. Predator diversity and trophic interactions. Ecology 88: 2415–2426.CrossRefPubMedGoogle Scholar
  59. Schmitz, O. J., 2008. Effects of predator hunting mode on grassland ecosystem function. Science 319: 952–954.CrossRefPubMedGoogle Scholar
  60. Schmitz, O. J., V. Krivan & O. Ovadia, 2004. Trophic cascades: the primacy of trait-mediated indirect interactions. Ecology Letters 7: 153–163.CrossRefGoogle Scholar
  61. Schnitzler, H. U. & E. K. V. Kalko, 2001. Echolocation by insect eating bats. Biosecience 51: 557–569.CrossRefGoogle Scholar
  62. Seelbach, P. W., & M. J. Wiley, 1997. Overview of the Michigan rivers inventory (MRI) project. Department of Natural Resources.Google Scholar
  63. Sih, A., D. L. Bolnick, B. Luttber, J. L. Orrock, S. D. Peacor, L. M. Pintor, E. Preisser, J. S. Rehage & J. R. Vonesh, 2010. Predator-prey naiveté, antipredator behavior, and the ecology of predator invasions. Oikos 119: 610–621.CrossRefGoogle Scholar
  64. Smee, D. L., M. C. Ferner & M. J. Weissburg, 2008. Alteration of sensory abilities regulates the spatial scale of nonlethal predator effects. Oecologia 156: 399–409.CrossRefPubMedGoogle Scholar
  65. Smee, D. L., M. C. Ferner & M. J. Weissburg, 2010. Hydrodynamic sensory stressors produce nonlinear predation patterns. Ecology 156: 399–409.Google Scholar
  66. Smith, J. M. & J. Harper, 2003. Animal Signals. Oxford University Press, Oxford.Google Scholar
  67. Stein, R. A., 1977. Selective predation, optimal foraging, and the predator–prey interaction between fish and crayfish. Ecology 58(6): 1237–1253.CrossRefGoogle Scholar
  68. Tomba, A. M., T. A. Keller & P. A. Moore, 2001. Foraging in complex odor landscapes: Chemical orientation strategies during stimulation by conflicting chemical cues. Journal of the North American Benthological Society 20: 221–222.CrossRefGoogle Scholar
  69. Turner, A. M., 1997. Contrasting short-term and long-term effects of predation risk on consumer habitat use and resources. Behavioral Ecology 8: 120–125.CrossRefGoogle Scholar
  70. Turner, A. M. & S. L. Montgomery, 2003. Spatial and temporal scales of predator avoidance: Experiments with fish and snails. Ecology 84: 616–622.CrossRefGoogle Scholar
  71. Turner, A. & S. Peacor, 2012. Scaling up infochemicals: ecological consequences of chemosensory assessment of predation risk. In Brönmark, C. & L. Hansson (eds), Chemical Ecology in Aquatic Systems. Oxford University Press, Oxford.Google Scholar
  72. Van Buskirk, J. & M. Arioli, 2002. Dosage response of an induced defense: How sensitive are tadpoles to predation risk? Ecology 83: 1580–1585.CrossRefGoogle Scholar
  73. Van Staaden, M. J. & H. Romer, 1997. Sexual signaling in bladder grasshoppers: tactical design for maximizing calling range. Journal of Experimental Biology 200: 2597–2608.PubMedGoogle Scholar
  74. Wehrly, K. E., M. J. Wiley & P. W. Seelbach, 2003. Classifying regional variation in thermal regime based on stream fish community patterns. Transactions of the American Fisheries Society 132: 18–38.CrossRefGoogle Scholar
  75. Weissburg, M. J., 2000. The fluid dynamical context of chemosensory behavior. Biological Bulletin 198: 188–202.CrossRefPubMedGoogle Scholar
  76. Weissburg, M. J. & R. K. Zimmer-Faust, 1993. Life and death in moving fluids: Hydrodynamic effects on chemosensory-mediated Predation. Ecology 74: 1428–1443.CrossRefGoogle Scholar
  77. Weissburg, M. J., D. L. Smee & M. C. Ferner, 2014. The sensory ecology of nonconsumptive predator effects. The American Naturalist 184: 141–157.CrossRefPubMedGoogle Scholar
  78. Wilgers, D. J. & E. A. Hebets, 2012. Seismic signaling is crucial for female mate choice in a multi-modal signaling wolf spider. Ethology 118: 387–397.CrossRefGoogle Scholar
  79. Wilson, D. A., 1998. Synaptic correlates of odor habituation in the rat anterior piriform cortex. Journal of Neurophysiology 80: 998–1001.CrossRefPubMedGoogle Scholar
  80. Wilson, M. L. & M. J. Weissburg, 2013. Biotic structure indirectly affects associated prey in a predator-specific manner via changes in the sensory environment. The American Naturalist 184(2): 141–157.Google Scholar
  81. Woodcock, B. A. & M. S. Heard, 2011. Disentangling the effects of predator hunting mode habitat domain on the top–down control of insect herbivores. Journal of Animal Ecology 80: 495–503.CrossRefPubMedGoogle Scholar
  82. Zorn, T. G., P. W. Seelbach & M. J. Wiley, 2002. Distributions of stream fishes and their relationship to stream size and hydrology in Michigan’s Lower Peninsula. Transactions of the American Fisheries Society 131(1): 70–85.CrossRefGoogle Scholar
  83. Zuur, A. F., E. N. Ieno, N. J. Walker, A. A. Saveliey & G. M. Smith, 2009. Mixed Effects Models and Extensions in Ecology with R. Springer, New York.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Biological Sciences, Laboratory for Sensory Ecology, J.P. Scott Center for Neuroscience, Mind, and BehaviorBowling Green State UniversityBowling GreenUSA
  2. 2.University of Michigan Biological StationPellstonUSA

Personalised recommendations