, Volume 815, Issue 1, pp 267–280 | Cite as

Carotenoid-based skin coloration signals antioxidant defenses in the brown trout (Salmo trutta)

  • Marco Parolini
  • Rocco Iacobuzio
  • Cristina Daniela Possenti
  • Bruno Bassano
  • Roberta Pennati
  • Nicola Saino
Primary Research Paper


Carotenoid-based signals may function as indicators of individual quality because, being exclusively obtained from the diet, they indicate the ability of individuals to intake high-quality food. Moreover, carotenoids are involved in several important physiological functions, including antioxidant defense, so that carotenoid-based colorations have been suggested to reflect the antioxidant status of their bearers. The present correlative, cross-sectional study aimed at investigating if the skin carotenoid-based coloration is a signal of antioxidant defenses in the brown trout (Salmo trutta Linnaeus, 1758). We investigated the relationships between carotenoid-based coloration traits (including the number, density and redness of red spots, as well as the ventral yellowness), and both non-enzymatic (plasma and liver total antioxidant capacity) and enzymatic antioxidant defenses (activity of hepatic superoxide dismutase —SOD, catalase —CAT and glutathione peroxidase —GPx). We found significant positive covariations between antioxidant defenses and carotenoid-based skin coloration, in terms of ventral yellowness. Brown trout individuals displaying intense carotenoid-based coloration (i.e., ventral yellowness) had a high non-enzymatic antioxidant capacity both in plasma and in liver and, interestingly, an elevated activity of hepatic SOD and CAT. Our data suggest that carotenoid-based skin colorations may be considered a signal of individual quality in terms of antioxidant defenses in the brown trout.


Carotenoids Skin coloration Antioxidants Signaling Brown trout 



We are very grateful to the Gran Paradiso National Park for the opportunity to perform this study. We would like to thank all the employers of the park surveillance involved during the sampling operations. We would like to thank Dr. Margherita Corti and Dr. Stefano Podofillini for their pivotal help in image analysis.

Compliance with ethical standards

Conflict of interest

The authors declare to have no conflict of interest.

Supplementary material

10750_2018_3571_MOESM1_ESM.docx (3.1 mb)
Supplementary material 1 (DOCX 3196 kb)


  1. Alonso-Alvarez, C., S. Bertrand, G. Devevey, J. Prost, B. Faivre & G. Sorci, 2004. Increased susceptibility to oxidative stress as a proximate cost of reproduction. Ecology Letters 7: 363–368.CrossRefGoogle Scholar
  2. Aparicio, E., E. Garcia-Berthou, R. M. Araguas, P. Martinez & J. L. Garcia-Marin, 2005. Body pigmentation pattern to assess introgression by hatchery stocks in native Salmo trutta from Mediterranean streams. Journal of Fish Biology 67: 931–949.CrossRefGoogle Scholar
  3. Backström, T., E. Brännäs, J. Nilsson & C. Magnhagen, 2014. Behaviour, physiology and carotenoid pigmentation in Arctic charr Salvelinus alpinus. Journal of Fish Biology 84: 1–9.CrossRefPubMedGoogle Scholar
  4. Bagnara, J. T., 1998. Comparative anatomy and physiology of pigment cells in nonmammalian tissues. In Nordland, J., R. Boissy, V. Hearing, R. King & J. Ortonne (eds), The Pigmentary System. Physiology and Pathophysiology. Oxford University Press, New York: 9–40.Google Scholar
  5. Balshine, S., 2012. Patterns of parental care in vertebrates. In Royle, N., P. Smiseth & M. Kölliker (eds), The Evolution of Parental Care. Oxford University Press, Oxford: 62–80.CrossRefGoogle Scholar
  6. Bertrand, S., B. Faivre & G. Sorci, 2006. Do carotenoid-based sexual traits signal the availability of non-pigmentary antioxidants? Journal of Experimental Biology 209: 4414–4419.CrossRefPubMedGoogle Scholar
  7. Birnie-Gauvin, K., D. Costantini, S. J. Cooke & W. G. Willmore, 2017. A comparative and evolutionary approach to oxidative stress in fish: a review. Fish and Fisheries 18: 928–942.CrossRefGoogle Scholar
  8. Bjerkeng, B., T. Storebakken & S. Liaaen-Jensen, 1992. Pigmentation of rainbow-trout from start feeding to sexual-maturation. Aquaculture 108: 333–346.CrossRefGoogle Scholar
  9. Blanc, J. M., H. Poisson & R. Vibert, 1982. Variabilite genetique de la ponctuation noire sur la truitelle Fario (Salmo trutta L.). Annales De Genetique Et De Selection Animale 14: 225–236.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Blanc, J. M., B. Chevassus & F. Krieg, 1994. Inheritance of the number of red spots on the skin of the brown trout. Aquatic Living Resources 7: 133–136.CrossRefGoogle Scholar
  11. Blomhoff, R., & H. K. Blomhoff, 2006. Overview of retinoid metabolism and function. Developmental Neurobiology 66(7): 606–630.CrossRefGoogle Scholar
  12. Blount, J. D., D. C. Houston & A. P. Møller, 2000. Why egg yolk is yellow. Trends in Ecology & Evolution 15: 47–49.CrossRefGoogle Scholar
  13. Boonstra, R., 2013. Reality as the leading cause of stress: rethinking the impact of chronic stress in nature. Functional Ecology 27(1): 11–23.CrossRefGoogle Scholar
  14. Bradford, M. M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry 72(1–2): 248–254.CrossRefPubMedGoogle Scholar
  15. Brown, A. C., H. M. Leonard, K. J. McGraw & E. D. Clotfelter, 2014. Maternal effects of carotenoid supplementation in an ornamented cichlid fish (Amantitlania siquia). Functional Ecology 28: 612–620.CrossRefGoogle Scholar
  16. Bud, I., I. L. Dombi, & V. V. Vlădău, 2009. The geographic isolation impact on evolution of some morpho-physiological features in the Brown trout (Salmo trutta fario Linnaeus). AACL Bioflux 2: 31–50.Google Scholar
  17. Burton, G. W. & K. U. Ingold, 1984. β-carotene: an unusual type of lipid antioxidant. Science 224: 569–573.CrossRefPubMedGoogle Scholar
  18. Candolin, U. & L. Tukiainen, 2015. The sexual selection paradigm: have we overlooked other mechanisms in the evolution of male ornaments? Proceedings of the Royal Society of London. Series B, Biological Sciences 282: 1–9.CrossRefGoogle Scholar
  19. Catoni, C., A. Peters & H. M. Schaefer, 2008. Life history trade-offs are influenced by the diversity, availability and interactions of dietary antioxidants. Animal Behaviour 76: 1107–1119.CrossRefGoogle Scholar
  20. Costantini, D. & A. P. Møller, 2008. Carotenoids are minor antioxidants for birds. Functional Ecology 22: 367–370.CrossRefGoogle Scholar
  21. Craig, J. K., C. J. Foote & C. C. Wood, 2005. Countergradient variation in carotenoid use between sympatric morphs of sockeye salmon (Oncorhynchus nerka) exposes nonanadromous hybrids in the wild by their mismatched spawning colour. Biological Journal of the Linnean Society 84: 287–305.CrossRefGoogle Scholar
  22. Dale, J., C. J. Dey, K. Delhey, B. Kempenaers & M. Valcu, 2015. The effects of life history and sexual selection on male and female plumage colouration. Nature 527: 367–370.CrossRefPubMedGoogle Scholar
  23. Djurdjevič, I., M. E. Kreft & S. Sušnik Bajec, 2015. Comparison of pigment cell ultrastructure and organisation in the dermis of marble trout and brown trout, and first description of erythrophore ultrastructure in salmonids. Journal of Anatomy 227: 583–595.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Endler, J. A., 1980. Natural-selection on color patterns in Poecilia reticulata. Evolution 34: 76–91.CrossRefPubMedGoogle Scholar
  25. Erel, O., 2004. A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clinical Biochemistry 37: 277–285.CrossRefPubMedGoogle Scholar
  26. Fujii, R., 2000. The regulation of motile activity in fish chromatophores. Pigment Cell Research 13: 300–319.CrossRefPubMedGoogle Scholar
  27. Garner, S. R., B. D. Neff & M. A. Bernards, 2010. Dietary carotenoid levels affect carotenoid and retinoid allocation in female Chinook salmon Oncorhynchus tshawytscha. Journal of Fish Biology 76: 1474–1490.CrossRefPubMedGoogle Scholar
  28. Halliwell, B., 1996. Vitamin C: antioxidant or pro-oxidant in vivo? Free Radical Research 25: 439–454.CrossRefPubMedGoogle Scholar
  29. Hartley, R. C. & M. W. Kennedy, 2004. Are carotenoids a red herring in sexual display? Trends in Ecology & Evolution 19: 353–354.CrossRefGoogle Scholar
  30. Hubbard, J. K., J. A. C. Uy, M. E. Hauber, H. E. Hoekstra & R. J. Safran, 2010. Vertebrate pigmentation: from underlying genes to adaptive function. Trends in Genetics 26: 231–239.CrossRefPubMedGoogle Scholar
  31. Ibrahim, A., C. Shimizu & M. Kono, 1984. Pigmentation of cultured red sea bream, Chrysophrys major, using astaxanthin from Antarctic krill, Euphausia superba, and a mysid, Neomysis sp. Aquaculture 38: 45–57.CrossRefGoogle Scholar
  32. Johnstone, R. A., 1997. The evolution of animal signals. In Krebs, J. R. & N. B. Davies (eds), Behavioural ecology: an evolutionary approach. Blackwell Scientific Publications, Oxford: 155–178.Google Scholar
  33. Kelsh, R. N., 2004. Genetics and evolution of pigment patterns in fish. Pigment Cell Research 17: 326–336.CrossRefPubMedGoogle Scholar
  34. Kim, S.-Y. & A. Velando, 2016. Genetic conflict between sexual signaling and juvenile survival in the three-spined stickleback. BMC Evolutionary Biology 16: 1–7.CrossRefGoogle Scholar
  35. Kocabaş, M., M. Kayim, E. Can, M. Ateş & F. Kutluyer, 2011. Spotting pattern features in the brown trout (Salmo trutta macrostigma, T., 1954) population. Scientific Research and Essays 6: 5021–5024.Google Scholar
  36. Kolluru, G. R., G. F. Grether, S. H. South, E. Dunlop, A. Cardinali, L. Liu & A. Carapiet, 2006. The effects of carotenoid and food availability on resistance to a naturally occurring parasite (Gyrodactylus turnbulli) in guppies (Poecilia reticulata). Biological Journal of the Linnean Society 89(2): 301–309.CrossRefGoogle Scholar
  37. Kop, A. & Y. Durmaz, 2008. The effect of synthetic and natural pigments on the colour of the cichlids (Cichlasoma severum sp., Heckel 1840). Aquaculture International 16: 117–122.CrossRefGoogle Scholar
  38. Krinsky, N. I., 1989. Antioxidant functions of carotenoids. Free Radical Biology Medicine 7: 617–635.CrossRefPubMedGoogle Scholar
  39. Krinsky, N. I., 1993. Actions of carotenoids in biological systems. Annual Review of Nutrition 13(1): 561–587.CrossRefPubMedGoogle Scholar
  40. Krinsky, N. I., & K. J. Yeum, 2003. Carotenoid–radical interactions. Biochemical and Biophysical Research Communications 305(3): 754–760.CrossRefPubMedGoogle Scholar
  41. Leclercq, E., J. F. Taylor & H. Migaud, 2010. Morphological skin colour changes in teleosts. Fish and Fisheries 11: 159–193.CrossRefGoogle Scholar
  42. León, K., D. Mery, F. Pedreschi & J. León, 2006. Color measurement in L∗a∗b∗ units from RGB digital images. Food Research International 39: 1084–1091.CrossRefGoogle Scholar
  43. Li, M. H., E. H. Robinson, D. F. Oberle & P. V. Zimba, 2007. Effects of various dietary carotenoid pigments on fillet appearance and pigment absorption in channel catfish Ictalarus punctatus. Journal of the World Aquaculture Society 38: 557–563.CrossRefGoogle Scholar
  44. Lozano, G. A., 1994. Carotenoids, parasites, and sexual selection. Oikos 70: 309–311.CrossRefGoogle Scholar
  45. Lozano, G. A., 2001. Carotenoids, immunity, and sexual selection: comparing apples and oranges?. The American Naturalist 158(2): 200–203.CrossRefPubMedGoogle Scholar
  46. Lushchak, V. I., 2011. Environmentally induced oxidative stress in aquatic animals. Aquatic toxicology 101(1): 13–30.CrossRefPubMedGoogle Scholar
  47. Martínez-Álvarez, R. M., A. E. Morales & A. Sanz, 2005. Antioxidant defenses in fish: biotic and abiotic factors. Reviews in Fish Biology and Fisheries 15: 75–88.CrossRefGoogle Scholar
  48. McGraw, K. J., 2005. The antioxidant function of many animal pigments: are there consistent health benefits of sexually selected colourants? Animal Behaviour 69: 757–764.CrossRefGoogle Scholar
  49. Modesto, K. A. & C. B. Martinez, 2010. Roundup® causes oxidative stress in liver and inhibits acetylcholinesterase in muscle and brain of the fish Prochilodus lineatus. Chemosphere 78: 294–299.CrossRefPubMedGoogle Scholar
  50. Møller, A. P., C. Biard, J. D. Blount, D. C. Houston, P. Ninni, N. Saino & P. F. Surai, 2000. Carotenoid-dependent signals: indicators of foraging efficiency, immunocompetence or detoxification ability? Poultry and Avian Biology Reviews 11: 137–160.Google Scholar
  51. Monaghan, P., N. B. Metcalfe & R. Torres, 2009. Oxidative stress as a mediator of life history trade-offs: mechanisms, measurements and interpretation. Ecology Letters 12: 75–92.CrossRefPubMedGoogle Scholar
  52. Mortensen, A. & L. H. Skibsted, 1996. Kinetics of parallel electron transfer from beta-carotene to phenoxyl radical and adduct formation between phenoxyl radical and beta-carotene. Free Radical Research 25: 515–523.CrossRefPubMedGoogle Scholar
  53. Mozsár, A., G. Boros, P. Sály, L. Antal & S. A. Nagy, 2015. Relationship between Fulton’s condition factor and proximate body composition in three freshwater fish species. Journal of Applied Ichthyology 31: 315–320.CrossRefGoogle Scholar
  54. Olson, V. A. & I. P. F. Owens, 1998. Costly sexual signals: are carotenoids rare, risky or required? Trends in Ecology & Evolution 13: 510–514.CrossRefGoogle Scholar
  55. Packer, L., 1992. Carotenoids. Part A, Chemistry, Separation, Quantitation, and Antioxidation. Academic Press, London, UK.Google Scholar
  56. Parolini, M., A. Binelli, D. Cogni & A. Provini, 2010. Multi-biomarker approach for the evaluation of the cyto-genotoxicity of paracetamol on the zebra mussel (Dreissena polymorpha). Chemosphere 79: 489–498.CrossRefPubMedGoogle Scholar
  57. Parolini, M., C. D. Possenti, F. Karadas, G. Colombo, M. Romano, M. Caprioli, … & N. Saino, 2017. Yolk vitamin E positively affects prenatal growth but not oxidative status in yellow-legged gull embryos. Current Zoology: zox037.Google Scholar
  58. Perez, C., M. Lores & A. Velando, 2008. Availability of nonpigmentary antioxidant affects red coloration in gulls. Behavioral Ecology 19: 967–973.CrossRefGoogle Scholar
  59. Perez-Rodriguez, L., 2009. Carotenoids in evolutionary ecology: re-evaluating the antioxidant role. Bioessays 31: 1116–1126.CrossRefPubMedGoogle Scholar
  60. Perez-Rodriguez, L., F. Mougeot, C. Alonso-Alvarez, J. Blas, J. Vinuela & G. R. Bortolotti, 2008. Cell-mediated immune activation rapidly decreases plasma carotenoids but does not affect oxidative stress in red-legged partridges (Alectoris rufa). Journal of Experimental Biology 211: 2155–2161.CrossRefPubMedGoogle Scholar
  61. Peters, A., 2007. Testosterone and carotenoids: an integrated view of trade-offs between immunity and sexual signalling. Bioessays 29(5): 427–430.CrossRefPubMedGoogle Scholar
  62. Pike, T. W., J. D. Blount, J. Lindström & N. B. Metcalfe, 2007. Availability of noncarotenoid antioxidants affects the expression of a carotenoid-based sexual ornament. Biology Letters 3: 353–356.CrossRefPubMedPubMedCentralGoogle Scholar
  63. Rahman, M. M., S. Khosravi, K. H. Chang & S. M. Lee, 2016. Effects of dietary inclusion of astaxanthin on growth, muscle pigmentation and antioxidant capacity of juvenile rainbow trout (Oncorhynchus mykiss). Preventive nutrition and food science 21(3): 281.CrossRefPubMedPubMedCentralGoogle Scholar
  64. Robinson, M. K., R. R. Rustum, E. A. Chambers, J. D. Rounds, D. W. Wilmore & D. O. Jacobs, 1997. Starvation enhances hepatic free radical release following endotoxemia. Journal of Surgical Research 69: 325–330.CrossRefPubMedGoogle Scholar
  65. Stegen, J. C., C. M. Gienger & L. Sun, 2004. The control of color change in the Pacific tree frog, Hyla regilla. Canadian Journal of Zoology 82: 889–896.CrossRefGoogle Scholar
  66. Stephensen, C. B., 2001. Vitamin A, infection, and immune function. Annual Review of Nutrition 21(1): 167–192CrossRefPubMedGoogle Scholar
  67. Steven, D. M., 1947. Carotenoid pigmentation in trout. Nature 160: 540.CrossRefPubMedGoogle Scholar
  68. Steven, D. M., 1948. Studies on animal carotenoids. 1. Carotenoids of the brown trout (Salmo trutta Linnaeus). Journal of Experimental Biology 25: 369–387.PubMedGoogle Scholar
  69. Stevens, M., C. A. Parraga, I. C. Cuthill, J. C. Partridge & T. S. Troscianko, 2007. Using digital photography to study animal coloration. Biological Journal of the Linnean Society 90: 211–237.CrossRefGoogle Scholar
  70. Svensson, P. A. & B. B. M. Wong, 2011. Carotenoid-based signals in behavioural ecology: a review. Behaviour 148: 131–189.CrossRefGoogle Scholar
  71. Vinkler, M. & T. Albrecht, 2010. Carotenoid maintenance handicap and the physiology of carotenoid-based signalisation of health. Naturwissenschaften 97(1): 19–28.CrossRefPubMedGoogle Scholar
  72. von Schantz, T., S. Bensch, M. Grahn, D. Hasselquist, & H. Wittzell, 1999. Good genes, oxidative stress and condition-dependent sexual signals. Proceedings of the Royal Society of London. Series B, Biological Sciences 266: 1–12.Google Scholar
  73. Wang, Y., Y. Chien & C. Pan, 2006. Effects of dietary supplementation of carotenoids on survival, growth, pigmentation, and antioxidant capacity of characins, Hyphessobrycon callistus. Aquaculture 261: 641–648.CrossRefGoogle Scholar
  74. Wedekind, C., P. Meyer, M. Frischknecht, U. A. Niggli & H. Pfander, 1998. Different carotenoids and potential information content of red coloration of male three-spined stickleback. Journal of Chemical Ecology 24: 787–801.CrossRefGoogle Scholar
  75. Wilkins, L. G., L. M. Da Cunha, L. Menin, D. Ortiz, V. Vocat-Mottier, M. Hobil, et al. 2017. Maternal allocation of carotenoids increases tolerance to bacterial infection in brown trout. Oecologia 185(3): 351–363.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Marco Parolini
    • 1
  • Rocco Iacobuzio
    • 1
    • 2
  • Cristina Daniela Possenti
    • 1
  • Bruno Bassano
    • 2
  • Roberta Pennati
    • 1
  • Nicola Saino
    • 1
  1. 1.Department of Environmental Science and PolicyUniversity of MilanMilanItaly
  2. 2.Alpine Wildlife Research CentreGran Paradiso National ParkValsavarencheItaly

Personalised recommendations