, Volume 817, Issue 1, pp 341–348 | Cite as

The effect of newt toxin on an invasive snail

  • William M. Ota
  • Braden Olsen
  • Gary M. BucciarelliEmail author
  • Lee B. Kats


Invasive species are well documented to impact native species where they are introduced. In the Santa Monica Mountains, a native species of amphibian, the California newt (Taricha torosa) possesses a neurotoxin, tetrodotoxin (TTX) that is considered a chemical defense against predation but also appears to facilitate ecological processes and specifically affect freshwater macroinvertebrate behavior. A recently introduced invasive species, the New Zealand mud snail (Potamopyrgus antipodarum), is known to negatively affect ecosystems it invades and means to control its proliferation once introduced are limited. Given the ecological role of newt neurotoxin, we hypothesized that TTX may impact P. antipodarum behavior and tested its effects upon snail movement in laboratory assays and in-stream experiments. When snails were exposed to ecologically realistic TTX concentrations and newt chemical cues that contain TTX they moved significantly less and distance was significantly reduced relative to controls. In a natural stream, significantly more P. antipodarum moved out of areas exposed to newt chemical cues relative to snails in the presence of native tree frog cues (Pseudacris cadaverina). Our results suggest that California newts may help limit the spread of P. antipodarum in streams where T. torosa is both able to persist and possess adequate chemical defenses.


New Zealand mud snail Taricha Potamopyrgus antipodarum Santa Monica Mountains Los Angeles 


  1. Alonso, A. & P. Castro-Diez, 2008. What explains the invading success of the aquatic mud snail Potamopyrgus antipodarum (Hydrobiidae, Mollusca)? Hydrobiologia 614: 107–116.CrossRefGoogle Scholar
  2. Brodie, E. D., C. R. Feldman, C. T. Hanifin, J. E. Motychak, D. G. Mulcahy, B. L. Williams & E. D. Brodie, 2005. Parallel arms races between garter snakes and newts involving tetrodotoxin as the phenotypic interface of coevolution. Journal of Chemical Ecology 31: 343–356.CrossRefPubMedGoogle Scholar
  3. Bucciarelli, G. M. & L. B. Kats, 2015. Effects of newt chemical cues on the distribution and foraging behavior of stream macroinvertebrates. Hydrobiologia 749: 69–81.CrossRefGoogle Scholar
  4. Bucciarelli, G. M., A. R. Blaustein, T. S. Garcia & L. B. Kats, 2014. Invasion complexities: the diverse impacts of nonnative species on amphibians. Copeia 14: 611–632.CrossRefGoogle Scholar
  5. Bucciarelli, G. M., D. B. Green, H. B. Shaffer & L. B. Kats, 2016. Individual fluctuations in toxin levels affect breeding site fidelity in a chemically defended amphibian. Proceedings of the Royal Society B 283: 20160468.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Camargo, J. A. & J. V. Ward, 1992. Short-term toxicity of sodium nitrate (NaNO3) to non-target freshwater invertebrates. Chemosphere 24: 23–28.CrossRefGoogle Scholar
  7. Chin, A., 2002. The periodic nature of step-pool mountain streams. American Journal of Science 302: 144–167.CrossRefGoogle Scholar
  8. Elkin, C. M. & R. L. Baker, 2000. Lack of preference for low-predation-risk habitats in larval damselflies explained by costs of intraspecific interactions. Animal Behaviour 60: 511–521.CrossRefPubMedGoogle Scholar
  9. Elliott, S., L. Kats & J. Breeding, 1993. The use of conspecific chemical cues for cannibal avoidance in California newts (Taricha torosa). Ethology 95: 186–192.CrossRefGoogle Scholar
  10. Gamradt, S. C. & L. B. Kats, 1996. Effect of introduced crayfish and mosquitofish on California newts. Conservation Biology 10: 1155–1162.CrossRefGoogle Scholar
  11. Gerard, C., O. Miura, J. Lorda, T. H. Cribb, M. J. Nolan & R. F. Hechinger, 2017. A native-range source for a persistent trematode parasite of the exotic New Zealand mudsnail (Potamopyrgus antipodarum) in France. Hydrobiologia 785: 115–126.CrossRefGoogle Scholar
  12. Gherardi, F., 2007. Understanding the impact of invasive crayfish. Biological Invaders in Inland Waters: Profiles, Distribution, and Threats. Springer, Dordrecht: 507–542.CrossRefGoogle Scholar
  13. Grosholz, E., 2002. Ecological and evolutionary consequences of coastal invasion. Trends in Ecology & Evolution 17: 22–27.CrossRefGoogle Scholar
  14. Hay, M. E., 2009. Marine chemical ecology: chemical signals and cues structure marine populations, communities, and ecosystems. Annual Review of Marine Science 1: 193–212.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Hayes, M. P. & M. R. Jennings, 1986. Decline of Ranid frog species in Western North America: are Bullfrogs (Rana catesbeiana) responsible? Journal of Herpetology 20: 490–509.CrossRefGoogle Scholar
  16. Hershler, R., H. P. Liu & W. H. Clark, 2010. Microsatellite evidence of invasion and rapid spread of divergent New Zealand mudsnail (Potamopyrgus antipodarum) clones in the Snake River basin, Idaho, USA. Biological Invasions 12: 1521–1532.CrossRefGoogle Scholar
  17. Hibbs, B. J., W. Hu & R. Ridgway, 2012. Origin of stream flows at the wildlands-urban interface, santa monica mountains, California, USA. Environmental & Engineering Geoscience 18: 51–64.CrossRefGoogle Scholar
  18. Howe, N. R. & Y. M. Sheikh, 1975. Anthopleurine: a sea anemone alarm pheromone. Science 189: 386–388.CrossRefPubMedGoogle Scholar
  19. Juliano, S. A. & M. E. Gravel, 2002. Predation and the evolution of prey behavior with tree hole mosquitoes. Behavioral Ecology 13: 301–311.CrossRefGoogle Scholar
  20. Kats, L. B. & R. P. Ferrer, 2003. Alien predators and amphibian declines: review of two decades of science and the transition to conservation. Diversity & Distributions 9: 99–110.CrossRefGoogle Scholar
  21. Kerans, B. L., M. F. Dybdahl, M. M. Gangloff & J. E. Jannot, 2005. Potamopyrgus antipodarum: distribution, density, and effects on native macroinvertebrate assemblages in the Greater Yellowstone Ecosystem. Journal of the North American Benthological Society 24: 123–138.CrossRefGoogle Scholar
  22. Koch, N., B. Lynch & R. Rochette, 2007. Trade-off between mating and predation risk in the marine snail, Littorina plena. Invertebrate Biology 126: 257–267.CrossRefGoogle Scholar
  23. Lawler, S. P., D. Dritz, T. Strange & M. Holyoak, 1999. Effects of introduced mosquitofish and bullfrogs on the threatened California red-legged frog. Conservation Biology 13: 613–622.CrossRefGoogle Scholar
  24. Lodge, D. M., R. A. Stein, K. M. Brown, A. P. Covich, C. Bronmark, J. E. Garvey & S. P. Klosiewski, 1998. Predicting impact of freshwater exotic species on native biodiversity: challenges in spatial scaling. Australian Journal of Ecology 23: 53–67.CrossRefGoogle Scholar
  25. McIntosh, A. & B. Peckarsky, 1996. Differential behavioural responses of mayflies from streams with and without fish to trout odour. Freshwater Biology 35: 141–148.CrossRefGoogle Scholar
  26. Moore, J. W., 2006. Animal ecosystem engineers in streams. BioScience 56: 237–246.CrossRefGoogle Scholar
  27. Mosher, H. S., F. A. Fuhrman, H. D. Buchwald & H. G. Fischer, 1964. Tarichatoxin-tetrodotoxin: a potent neurotoxin. Science 144: 1100–1110.CrossRefPubMedGoogle Scholar
  28. Pintor, L. M. & A. Sih, 2009. Differences in growth and foraging behavior of native and introduced populations of an invasive crayfish. Biological Invasions 11: 1895–1902.CrossRefGoogle Scholar
  29. Richards, D. C., L. D. Cazier & G. T. Lester, 2001. Spatial distribution of three snail species, including the invader Potamopyrgus antipodarum, in a freshwater spring. Western North American Naturalist 61: 375–380.Google Scholar
  30. Riley, S. P. D., G. T. Busteed, L. B. Kats, T. L. Vandergon, L. F. Lee, R. G. Dagit, J. L. Kerby, R. N. Fisher & R. M. Sauvajot, 2005. Effects of urbanization on the distribution and abundance of amphibians and invasive species in southern California streams. Conservation Biology 19(6): 1894–1907.CrossRefGoogle Scholar
  31. Rosenthal, S. K., S. S. Stevens & D. M. Lodge, 2006. Whole-lake effects of invasive crayfish (Orconectes spp.) and the potential for restoration. Canadian Journal of Fisheries & Aquatic Sciences 63: 1276–1285.CrossRefGoogle Scholar
  32. Schloegel, L. M., A. M. Picco, A. M. Kilpatrick, A. J. Davies, A. D. Hyatt & P. Daszak, 2009. Magnitude of the US trade in amphibians and presence of Batrachochytrium dendrobatidis and ranavirus infection in imported North American bullfrogs (Rana catesbeiana). Biological Conservation 142: 1420–1426.CrossRefGoogle Scholar
  33. Snyder, W. E. & E. W. Evans, 2006. Ecological effects of invasive arthropod generalist predators. Annual Review of Ecology, Evolution & Systematics 37: 95–122.CrossRefGoogle Scholar
  34. Statzner, B., O. Peltret & S. Tomanova, 2003. Crayfish as geomorphic agents and ecosystem engineers: effect of a biomass gradient on baseflow and flood-induced transport of gravel and sand in experimental streams. Freshwater Biology 48: 147–163.CrossRefGoogle Scholar
  35. Zimmer, R. K., D. W. Schar, R. P. Ferrer, P. J. Krug, L. B. Kats & W. C. Michel, 2006. The scent of danger: tetrodotoxin (TTX) as an olfactory cue of predation risk. Ecological monographs 76: 585–600.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • William M. Ota
    • 1
  • Braden Olsen
    • 1
  • Gary M. Bucciarelli
    • 2
    • 3
    Email author
  • Lee B. Kats
    • 1
  1. 1.Natural Science DivisionPepperdine UniversityMalibuUSA
  2. 2.Department of Ecology and Evolutionary BiologyUniversity of California, Los AngelesLos AngelesUSA
  3. 3.La Kretz Center for California Conservation ScienceUCLA Institute of the Environment and SustainabilityLos AngelesUSA

Personalised recommendations