Skip to main content

Water velocity modeling can delineate nearshore and main channel plankton environments in a large river

Abstract

Methods to distinguish nearshore and main channel ecosystems within large rivers are essential for observing physical, chemical, and biological features that influence overall river ecosystem function. Water velocity fields based on hydrodynamic modeling of water flow trajectory were used to evaluate water history (i.e., water moving slowly as in a slack water region, or more rapidly, as characteristic of the main channel) prior to passing a given point in the Upper St. Lawrence River. Using this method to differentiate zones in the river, observations of biotic and abiotic variables in nearshore and main channel zones during late spring and summer (June–August) were compared to assess the difference in these water column river ecosystems. Differences in plankton community composition between nearshore and main channel waters along the Upper St. Lawrence River were investigated to test the hypothesis that nearshore and main channel environments in large river systems have different biotic (e.g., phytoplankton, crustacean zooplankton, and rotifer concentrations) and abiotic [e.g., water temperature, specific conductivity, silicate, colored dissolved organic matter (CDOM), and total phosphorus] characteristics. Nearshore water had significantly higher concentrations of CDOM and chlorophyll-a than main channel waters. With distance downstream, crustacean zooplankton and rotifers decreased in abundance in both nearshore and main channel regions. This study describes an effective method for stratified sampling design that differentiates nearshore and main channel ecosystems in the water column of large rivers.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Anderson, E. J. & K. Campbell, 2013. The Upper St. Lawrence River forecasting system (USL). NOAA GLERL. Technical Report.

  2. Anderson, E. J., D. J. Schwab & G. A. Lang, 2010. Real-time hydraulic and hydrodynamic model of the St. Clair River, Lake St. Clair, Detroit River system. Journal of Hydrologic Engineering 136: 507–518.

    Article  Google Scholar 

  3. Basu, B. K. & F. R. Pick, 1996. Factors regulating phytoplankton and zooplankton biomass in temperate rivers. Limnology and Oceanography 41: 237–253.

    Google Scholar 

  4. Basu, B. K., J. Kalff & B. Pinel-Alloul, 2000. Midsummer plankton development along a large temperate river: the St. Lawrence River. Canadian Journal of Fisheries and Aquatic Science 57: 7–15.

    Article  Google Scholar 

  5. Bergfeld, T., A. Scherwass, B. Ackermann, H. Fischer, H. Arndt & A. Schöl, 2011. Longitudinal and seasonal dynamics of the planktonic microbial community along the length of the River Rhine. River Systems 19: 337–349.

    Article  Google Scholar 

  6. Brooks, J. L. & S. I. Dodson, 1965. Predation, body size, and composition of plankton. Science 150: 28–35.

    CAS  Article  PubMed  Google Scholar 

  7. Burns, C. W. & J. J. Gilbert, 1986. Effects of daphnid size and density on interference between Daphnia and Keratella cochlearis. Limnology and Oceanography 31: 848–858.

    Article  Google Scholar 

  8. Casper, A. F. & J. H. Thorp, 2007. Diel and lateral patterns of zooplankton distribution in the St. Lawrence River. River Research and Applications 23: 73–85.

    Article  Google Scholar 

  9. Chen, C., R. C. Beardsley & G. Cowles, 2006. An unstructured grid, finite-volume coastal ocean model (FVCOM) system. Oceanography 19: 78–89.

    Article  Google Scholar 

  10. Edmondson, W. T., 1945. Freshwater Biology. Wiley, New York.

    Google Scholar 

  11. Farrell, J. M., K. T. Holeck, E. L. Mills, C. E. Hoffman & V. J. Patil, 2010. Recent ecological trends in the lower trophic levels of the international section of the St. Lawrence River: a comparison of the 1970s to the 2000s. Hydrobiologia 647: 21–33.

    CAS  Article  Google Scholar 

  12. Foley, M. M., 2017. Dam Removal – Listening. Water Resources Research. https://doi.org/10.1002/2017WR020457.

    Google Scholar 

  13. Gilbert, J. J., 1988. Suppression of rotifer populations by Daphnia: a review of the evidence, the mechanisms, and the effects on zooplankton community structure. Limnology and Oceanography 33: 1286–1303.

    Article  Google Scholar 

  14. Hamilton, S. K., S. J. Sippel, W. M. Lewis & J. F. Saunders III, 1990. Zooplankton abundance and evidence for its reduction by macrophyte mats in two Orinoco floodplain lakes. Journal of Plankton Research 12: 345–363.

    Article  Google Scholar 

  15. Hardenbicker, P., M. Weitere, S. Ritz, F. Schöll & H. Fischer, 2016. Longitudinal plankton dynamics in the rivers Rhine and Elbe. River Research and Applications 32: 1264–1278.

    Article  Google Scholar 

  16. International Joint Commission, 2014. Lake Ontario – St. Lawrence River Plan 2014: Protecting Against Extreme Water Levels, Restoring Wetlands and Preparing for Climate Change, International Joint Commission, Ottawa/Washington DC: 98 pp.

  17. Istvànovic, V. & M. Honti, 2011. Phytoplankton growth in three rivers: the role of meroplankton and the benthic retention hypothesis. Limnology and Oceanography 56: 1439–1452.

    Article  Google Scholar 

  18. Lapierre, J. F. & J. J. Frenette, 2009. Effects of macrophytes and terrestrial inputs on fluorescent dissolved organic matter in a large river system. Aquatic Sciences-Research Across Boundaries 71: 15–24.

    CAS  Article  Google Scholar 

  19. Lind, O. T., 1979. Handbook of Common Methods in Limnology. Hunt Publishing Company, St. Louis.

    Google Scholar 

  20. Lucas, L. V., J. K. Thompson & L. R. Brown, 2009. Why are diverse relationships observed between phytoplankton biomass and transport time? Limnology and Oceanography 54: 381–390.

    Article  Google Scholar 

  21. Makarewicz, J. C. & E. T. Howell, 2012. The Lake Ontario nearshore study: introduction and summary. Journal of Great Lakes Research 38: 2–9.

    Article  Google Scholar 

  22. Martin, C., J. J. Frenette & L. Morin, 2005. Changes in the spectral and chemical properties of a water mass passing through extensive macrophyte beds in a large fluvial lake (Lake Saint- Pierre, Quebec, Canada). Aquatic Sciences 67: 196–209.

    CAS  Article  Google Scholar 

  23. Massicotte, P., J. Frenette, R. Proulx, B. Pinel-Alloul & A. Bertolo, 2014. Riverscape heterogeneity explains spatial variation in zooplankton functional evenness and biomass in a large river ecosystem. Landscape Ecology 29: 67–79.

    Article  Google Scholar 

  24. Poole, G. C., 2010. Stream hydrogeomorphology as a physical science basis for advances in stream ecology. Journal of the North American Benthological Society 29: 12–25.

    Article  Google Scholar 

  25. Reckendorfer, W., H. Keckeis, G. Winkler & F. Schiemer, 1999. Zooplankton abundance in the River Danube, Austria: the significance of inshore retention. Freshwater Biology 41: 583–591.

    Article  Google Scholar 

  26. Reynolds, C. S., 1994. The long, the short and the stalled: on the attributes of phytoplankton selected by physical mixing in lakes and rivers. Hydrobiologia 289: 9–21.

    Article  Google Scholar 

  27. Reynolds, C. S., 2000. Hydroecology of river plankton: the role of variability in channel flow. Hydrological Processes 14: 3119–3132.

    Article  Google Scholar 

  28. Schiemer, F., H. Keckeis, W. Reckendorfer & G. Winkler, 2001. The “inshore retention concept” and its significance for large rivers. Archiv für Hydrobiologie (Large Rivers) 135: 509–516.

    Google Scholar 

  29. Schwab, D. J. & K. W. Bedford, 1994. Initial implementation of the Great Lakes forecasting system: a real-time system for predicting lake circulation and thermal structure. Water Pollution Research Journal of Canada 29: 203–220.

    Google Scholar 

  30. Spaink, P. A., T. Ietswaart & R. Roijackers, 1998. Plankton dynamics in a dead arm of the River Waal: a comparison with the main channel. Journal of Plankton Research 20(10): 1997–2007.

    Article  Google Scholar 

  31. St-Onge-Drouin, S., G. Winkler, J. Dumais & S. Senneville, 2014. Hydrodynamics and spatial separation between two clades of a copepod species complex. Journal of Marine Science Systems 129: 334–342.

    Article  Google Scholar 

  32. Thompson, A., Y. Guo & S. Moin, 2008. Uncertainty analysis of a two-dimensional hydrodynamic model. Journal of Great Lakes Research 34: 472–484.

    Article  Google Scholar 

  33. Thorp, J. H., M. C. Thoms & M. D. Delong, 2008. The Riverine Ecosystem Synthesis: Toward Conceptual Cohesiveness in River Science, 1st ed. Elsevier, Oxford.

    Google Scholar 

  34. Twining, C. W. & D. M. Post, 2013. Cladoceran remains reveal presence of a keystone size-selective planktivore. Journal of Paleolimnology 49: 253–266.

    Article  Google Scholar 

  35. Twiss, M. R., 2011. Variations in chromophoric dissolved organic matter and its influence on the use of pigment-specific fluorimeters in the Great Lakes. Journal of Great Lakes Research 37(1): 124–131.

    CAS  Article  Google Scholar 

  36. Twiss, M. R. & D. E. Smith, 2011. Size-fractionated phytoplankton growth and microzooplankton grazing rates in the Upper St. Lawrence River. River Research and Applications 28: 1047–1053.

    Article  Google Scholar 

  37. Twiss, M. R., C. Ulrich, S. A. Kring, J. Harold & M. R. Williams, 2010. Plankton dynamics along a 180 km reach of the Saint Lawrence River from its headwaters in Lake Ontario. Hydrobiologia 647: 7–20.

    CAS  Article  Google Scholar 

  38. Vadadi-Fülöp, C., 2013. Microcrustacean assemblages in a large river: on the importance of the flow regime. Hydrobiologia 702(1): 129–140.

    Article  Google Scholar 

  39. Van den Brink, F. W. B., M. M. Van Katwijk & G. Van der Velde, 1994. Impact of hydrology on phyto- and zooplankton community composition in floodplain lakes along the Lower River Rhine and Meuse. Journal of Plankton Research 16(4): 351–373.

    Article  Google Scholar 

  40. Viroux, L., 1997. Zooplankton development in two large lowland rivers, the Moselle (France) and the Meuse (Belgium), in 1993. Journal of Plankton Research 19: 1743–1762.

    Article  Google Scholar 

  41. Ward, J. V. & J. A. Stanford, 1995. The serial discontinuity concept: extending the model to floodplain rivers. Regulations of Rivers: Research and Management 10: 159–168.

    Article  Google Scholar 

  42. Welschmeyer, N. A., 1994. Fluorometric analysis of chlorophyll-a in the presence of chlorophyll-b and pheopigments. Limnology and Oceanography 39: 1985–1992.

    CAS  Article  Google Scholar 

  43. Wetzel, R. G. & G. E. Likens, 2000. Limnological Analyses, 3rd ed. Springer, New York.

    Book  Google Scholar 

  44. Winter, C., T. Hein, G. Kavka, R. L. Mach & A. H. Farnleitner, 2007. Longitudinal changes in the bacterial community composition of the Danube River: a whole-river approach. Applications of Environmental Microbiology 73: 421–431.

    CAS  Article  Google Scholar 

  45. Zimmermann-Timm, H., H. Holst & H. Kausch, 2007. Spatial dynamics of rotifers in a large lowland river, the Elbe, Germany: how important are retentive shoreline habitats for the plankton community? Hydrobiologia 593(1): 49–58.

    Article  Google Scholar 

Download references

Acknowledgements

The Great Rivers Center at Clarkson University supported this research. We thank Samantha Longdaue, Dominique Powell, Heather Sprague, and Stefanie Kring for assistance with sampling in the field and laboratory analyses. We thank two anonymous reviews for helpful comments.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Michael R. Twiss.

Additional information

Handling editor: Gideon Gal

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ball, E.E., Smith, D.E., Anderson, E.J. et al. Water velocity modeling can delineate nearshore and main channel plankton environments in a large river. Hydrobiologia 815, 125–140 (2018). https://doi.org/10.1007/s10750-018-3556-5

Download citation

Keywords

  • Horizontal stratification
  • Hydrodynamic modeling
  • Nutrients
  • Phytoplankton
  • St. Lawrence River
  • Zooplankton