, Volume 817, Issue 1, pp 227–237 | Cite as

Plasticity responses of an invasive macrophyte species to inorganic carbon availability and to the interaction with a native species

  • José Vitor Botter Fasoli
  • Roger Paulo Mormul
  • Eduardo Ribeiro Cunha
  • Sidinei Magela Thomaz


Climatic changes predict alteration in dissolved inorganic carbon (DIC) in freshwater ecosystems. However, the responses of invasive submerged macrophytes to DIC are rarely assessed. We evaluated the phenotypic plasticity of the invasive macrophyte Hydrilla verticillata in response to DIC, and how the presence of a native, Egeria najas, influences plasticity of the invader. Both species grew under three DIC levels in monocultures and mixed cultures. In monocultures, H. verticillata’s relative growth rates (RGR) were higher than E. najas’s RGR in most treatments. In addition, increasing DIC leads to faster RGR for H. verticillata, evidencing its superior performance at higher DIC levels. In mixed cultures, H. verticillata grew faster in all treatments. We also found a larger number of branches of H. verticillata in both types of cultures, evidencing greater dispersal ability with increasing DIC. In conclusion, higher H. verticillata RGR with increasing DIC indicates that this species exhibited greater plasticity to carbon availability than the native species, which can partially explain its invasion success in ecosystems around the world. Our results also suggest that H. verticillata will benefit from increasing DIC in freshwater ecosystems during scenarios of climate change.


Jack-and-master Species invasions Aquatic macrophytes Carbon Climate change Hydrilla verticillata 



We thank T. X. Melo for support during experimental period and critical reading of this manuscript, and Katya Kovalenko (Associate Editor) and two anonymous reviewers for their comments and suggestions. We also thank the colleagues from the Aquatic Macrophytes Laboratory for productive discussions and experimental support. J. V. B. Fasoli acknowledges the Brazilian Council of Research (CNPq) for providing a scholarship. S. M. Thomaz and R.P. Mormul are Productivity Researchers from CNPq and acknowledge this agency for constant funding. E. R. Cunha thanks Fundação Araucária (an organization of the Government of state of Paraná, Brazil) and Itaipu Binacional for providing a scholarship. This work was partially supported by Coordination for the Improvement of Higher Education Personnel (CAPES), an organ of the Brazilian Government for the training of human resources, and Itaipu Binacional.

Compliance with ethical standards

Conflicts of interest

We declare that we have no conflict of interest.

Supplementary material

10750_2018_3543_MOESM1_ESM.docx (1.3 mb)
Supplementary material 1 (DOCX 1342 kb)


  1. Barko, J. W., D. Gunnison & S. R. Carpenter, 1991. Sediment interactions with submersed macrophyte growth and community dynamics. Aquatic Botany 41: 41–65.CrossRefGoogle Scholar
  2. Battarbee, R. W., 2010. Aquatic ecosystem variability and climate change: a palaeoecological perspective. In Kernan, M., R. W. Battarbee & B. Moss (eds), Climate Change Impacts on Freshwater Ecosystems. Blackwell, London: 15–37.CrossRefGoogle Scholar
  3. Bickel, T. O., 2017. Processes and factors that affect regeneration and establishment of the invasive aquatic plant Cabomba caroliniana. Hydrobiologia 788: 157–168.CrossRefGoogle Scholar
  4. Carmouze, J. P., 1994. O metabolismo dos ecossistemas aquáticos: fundamentos teóricos, métodos de estudo e análises químicas. Edgard Blücher, São Paulo.Google Scholar
  5. Caldeira, K. & M. E. Wickett, 2003. Anthropogenic carbon and ocean pH. Nature 425: 365.CrossRefPubMedGoogle Scholar
  6. Callaway, R. M., S. C. Pennings & C. L. Richards, 2003. Phenotypic plasticity and interactions among plants. Ecology 84: 1115–1128.CrossRefGoogle Scholar
  7. Carey, M. P., S. A. Sethi, S. J. Larsen & C. F. Rich, 2016. A primer on potential impacts, management priorities, and future directions for Elodea spp. in high latitude systems: learning from the Alaskan experience. Hydrobiologia 777: 1–19.CrossRefGoogle Scholar
  8. Chambers, P. A. & J. Kalff, 1985. The influence of sediment composition and irradiance on the growth and morphology of Myriophyllum spicatum L. Aquatic Botany 22: 253–263.CrossRefGoogle Scholar
  9. Davidson, A. N., M. Jennions & A. B. Nicotra, 2011. Do invasive species show higher phenotypic plasticity than native species and if so, is it adaptive? A meta-analysis. Ecology Letters 14: 419–431.CrossRefPubMedGoogle Scholar
  10. Dukes, J. S. & H. A. Mooney, 1999. Does global change increase the success of biological invaders? Trends in Ecology & Evolution 14: 135–139.CrossRefGoogle Scholar
  11. Dülger, E., P. Heidbüchel, T. Schumann, T. Mettler-Altmann & A. Hussner, 2017. Interactive effects of nitrate concentrations and carbon dioxide on the stoichiometry, biomass allocation and growth rate of submerged aquatic plants. Freshwater Biology 62: 1094–1104.CrossRefGoogle Scholar
  12. Eller, F., A. B. Alnoee, T. Boderskov, W. Y. Guo, A. T. Kamp, B. K. Sorrell & H. Brix, 2015. Invasive submerged freshwater macrophytes are more plastic in their responses to light intensity than to the availability of free CO2 in air-equilibred water. Freshwater Biology 60: 929–943.CrossRefGoogle Scholar
  13. Evans, C. D., 2005. Modelling the effects of climate change on an acidic upland stream. Biogeochemistry 74: 21–46.CrossRefGoogle Scholar
  14. Fleming, J. P. & E. D. Dibble, 2015. Ecological mechanisms of invasion success in aquatic macrophytes. Hydrobiologia 746: 23–37.CrossRefGoogle Scholar
  15. Freitas, A. & S. M. Thomaz, 2011. Inorganic carbon shortage may limit the development of submersed macrophytes in habitats of the Paraná River basin. Acta Limnologica Brasiliensia 23: 57–62.CrossRefGoogle Scholar
  16. Gibson, D. J., J. Connolly, D. C. Hartnett & J. D. Weidenhamer, 1999. Designs for greenhouse studies of interactions between plants. Journal of Ecology 87: 1–16.CrossRefGoogle Scholar
  17. Griffis, T. J. & W. R. Rouse, 2001. Modelling the interannual variability of net ecosystem CO2 exchange at a subarctic sedge fen. Global Change Biology 7: 511–530.CrossRefGoogle Scholar
  18. Gruber, N., C. Hauri, Z. Lachkar, D. Loher, T. L. Frolicher & G.-K. Plattner, 2012. Rapid progression of ocean acidification in the California current system. Science 337: 220–223.CrossRefPubMedGoogle Scholar
  19. Hao, B., H. Wu, Q. Shi, G. Liu & W. Xing, 2013. Facilitation and competition among foundation species of submerged macrophytes threatened by severe eutrophication and implications for restoration. Ecological Engineering 60: 76–80.CrossRefGoogle Scholar
  20. Heino, J., R. Virkkala & H. Toivonen, 2009. Climate change and freshwater biodiversity: detected patterns, future trends and adaptations in northern regions. Biological Reviews 84: 39–54.CrossRefPubMedGoogle Scholar
  21. Hulme, P. E., 2008. Phenotypic plasticity and plant invasions: is it all Jack? Functional Ecology 22: 3–7.CrossRefGoogle Scholar
  22. Hussner, A. & P. Jahns, 2015. European native Myriophyllum spicatum showed a higher HCO−3 use capacity than alien invasive Myriophyllum heterophyllum. Hydrobiologia 746: 171–182.CrossRefGoogle Scholar
  23. Hussner, A., D. Hofstra, P. Jahns & J. Clayton, 2014. Response capacity to CO2 depletion rather than temperature and light effects explain the growth success of three alien Hydrocharitaceae compared with native Myriophyllum triphyllum in New Zealand. Aquatic Botany 120: 205–211.CrossRefGoogle Scholar
  24. Jeppesen, E., B. Kronvang, M. Meerhoff, M. Søndergaard, K. M. Hansen, H. E. Andersen, T. L. Lauridsen, L. Liboriussen, M. Beklioglu, A. Özen & J. E. Olesen, 2009. Climate change effects on runoff, catchment phosphorus loading and lake ecological state, and potential adaptations. Journal of Environmental Quality 38: 1930–1941.CrossRefPubMedGoogle Scholar
  25. Johnstone, I. M., 1986. Plant invasion windows: a time-based classification of invasion potential. Biological Reviews 61: 369–394.CrossRefGoogle Scholar
  26. Kahara, S. N. & J. E. Vermaat, 2003. The effect of alkalinity on photosynthesis-light curves and inorganic carbon extraction capacity of freshwater macrophytes. Aquatic Botany 75: 217–227.CrossRefGoogle Scholar
  27. MacIsaac, H. J., A. P. Eyraud, B. Beric & S. J. Ghabooli, 2016. Can tropical macrophytes establish in the Laurentian Great Lakes? Hydrobiologia 767: 165–174.CrossRefGoogle Scholar
  28. Malheiro, A. C. E., P. Jahns & A. Hussner, 2013. CO2 availability rather than light and temperature determines growth and phenotypical responses in submerged Myriophyllum aquaticum. Aquatic Botany 110: 31–37.CrossRefGoogle Scholar
  29. Marcé, R., B. Obrador, J. Morguí, J. L. Riera, P. López & J. Armengol, 2015. Carbonate weathering as a driver of CO2 supersaturation in lakes. Nature Geoscience 8: 107–111.CrossRefGoogle Scholar
  30. Michelan, T. S., S. M. Thomaz, R. P. Mormul & P. Carvalho, 2010. Effects of an exotic invasive macrophyte (tropical signal grass) on native plant community composition, species richness and functional diversity. Freshwater Biology 44: 1315–1326.CrossRefGoogle Scholar
  31. Moss, B., R. W. Battarbee & M. Kernan, 2010. Introduction. In Kernan, M., R. W. Battarbee & B. Moss (eds), Climate Change Impacts on Freshwater Ecosystems. Blackwell, London: 1–14.Google Scholar
  32. Nickus, U., K. Bishop, M. Erlandsson, C. D. Evans, M. Forsius, H. Laudon, D. M. Livingstone, D. Monteith & H. Thies, 2010. Direct impacts of climate change on freshwater ecosystems. In Kernan, M., R. W. Battarbee & B. Moss (eds), Climate Change Impacts on Freshwater Ecosystems. Blackwell, London: 38–64.CrossRefGoogle Scholar
  33. Pereira, H. M., P. W. Leadley, V. Proença, R. Alkemade, J. P. W. Scharlemann, J. F. Fernandez-Manjarrés, M. B. Araújo, P. Balvanera, R. Biggs, W. W. L. Cheung, L. Chini, H. D. Cooper, E. L. Gilman, S. Guénette, G. C. Hurtt, H. P. Huntington, G. M. Mace, T. Oberdorff, C. Revenga, P. Rodrigues, R. J. Scholes, U. R. Sumaila & M. Walpole, 2010. Scenarios for global biodiversity in the 21st century. Science 330: 1496–1501.CrossRefPubMedGoogle Scholar
  34. Pierini, S. A. & S. M. Thomaz, 2004. Effects of inorganic carbon source on photosynthetic rates of Egeria najas Planchon and Egeria densa Planchon (Hydrocharitaceae). Aquatic Botany 78: 135–146.CrossRefGoogle Scholar
  35. R Core Team, 2017. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0
  36. Raymond, P. A., N. Oh, R. E. Turner & W. Broussard, 2008. Anthropogenically enhanced fluxes of water and carbon from the Mississippi River. Nature 451: 449–452.CrossRefPubMedGoogle Scholar
  37. Richards, C. L., O. Bossdorf, N. Z. Muth, J. Gurevitch & M. Pigliucci, 2006. Jack of all trades, master of some? On the role of phenotypic plasticity in plant invasions. Ecology Letters 9: 981–999.CrossRefPubMedGoogle Scholar
  38. Riis, T., C. Lambertini, B. Olesen, J. S. Clayton, H. Brix & B. K. Sorrell, 2010. Invasion strategies in clonal aquatic plants: are phenotypic differences caused by phenotypic plasticity or local adaptation? Annals of Botany 106: 813–822.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Roberto, M. C., N. F. Santana & S. M. Thomaz, 2009. Limnology in the Upper Paraná River floodplain: large-scale spatial and temporal patterns, and the influence of reservoirs. Brazilian Journal of Biology 69: 717–725.CrossRefGoogle Scholar
  40. Roland, F., V. L. M. Huszar, V. F. Farjalla, A. Enrich-Prast, A. M. Amado & J. P. H. B. Ometto, 2012. Climate change in Brazil: perspective on the biogeochemistry of inland waters. Brazilian Journal of Biology 72: 709–722.CrossRefGoogle Scholar
  41. Sala, O. E., F. S. Chapin III, J. J. Armesto, E. Berlow, J. Bloomfield, R. Dirzo, E. Huber-Sanwald, L. F. Huenneke, R. B. Jackson, A. Kinzig & R. Leemans, 2000. Global biodiversity scenarios for the year 2100. Science 287: 1770–1774.CrossRefPubMedGoogle Scholar
  42. Schultz, R. & E. Dibble, 2012. Effects of invasive macrophytes on freshwater fish and macroinvertebrate communities: the role of invasive plant traits. Hydrobiologia 684: 1–14.CrossRefGoogle Scholar
  43. Short, F. T., S. Kosten, P. A. Morgan, S. Malone & G. E. Moore, 2016. Impacts of climate change on submerged and emergent wetland plants. Aquatic Botany 135: 3–17.CrossRefGoogle Scholar
  44. Silveira, M. J. & S. M. Thomaz, 2015. Growth of a native versus an invasive submerged aquatic macrophyte differs in relation to mud and organic matter concentrations in sediment. Aquatic Botany 124: 85–91.CrossRefGoogle Scholar
  45. Sousa, W. T. Z., S. M. Thomaz & K. J. Murphy, 2010. Response of native Egeria najas Planch. and invasive Hydrilla verticillata (L.f.) Royle to altered hydroecological regime in a subtropical river. Aquatic Botany 92: 40–48.CrossRefGoogle Scholar
  46. Spierenburg, P., E. C. H. E. T. Lucassen, A. F. Lotter & J. G. M. Roelofs, 2009. Could rising aquatic carbon dioxide concentrations favor the invasion of elodeids in isoetid-dominated softwater lakes? Freshwater Biology 54: 1819–1831.CrossRefGoogle Scholar
  47. Spierenburg, P., E. C. H. E. T. Lucassen, A. F. Lotter & J. G. M. Roelofs, 2010. Competition between isoetids and invading elodeids at different concentrations of aquatic carbon dioxide. Freshwater Biology 55: 1274–1287.CrossRefGoogle Scholar
  48. StatSoft Inc, 2007. Statistica. Statsoft Inc, Tulsa.Google Scholar
  49. Sultan, S. E., 2000. Phenotypic plasticity for plant development, function and life history. Trends in Plant Science 5: 537–542.CrossRefPubMedGoogle Scholar
  50. Thiébaut, G. & F. Di Nino, 2009. Morphological variations of natural populations of an aquatic macrophyte Elodea nuttallii in their native and in their introduced ranges. Aquatic Invasions 4: 311–320.CrossRefGoogle Scholar
  51. Thomaz, S. M., T. A. Pagioro, L. M. Bini, M. C. Roberto & R. R. A. Rocha, 2004. Limnological characterization of the aquatic environments and the influence of hydrometric levels. In Thomaz, S. M., A. A. Agostinho & N. Hahn (eds), The Upper Paraná River and its Floodplain: physical aspects, ecology and conservation. Backhuys Publishers, Leiden: 75–102.Google Scholar
  52. Tonetta, D., P. A. Staehr & M. M. Petrucio, 2017. Changes in CO2 dynamics related to rainfall and water level variations in a subtropical lake. Hydrobiologia 794: 109–123.CrossRefGoogle Scholar
  53. Umetsu, C. A., H. B. A. Evangelista & S. M. Thomaz, 2012. The colonization, regeneration, and growth rates of macrophytes from fragments: a comparison between exotic and native submerged aquatic species. Aquatic Ecology 46: 443–449.CrossRefGoogle Scholar
  54. Van, T. K., W. T. Haller & G. Bowes, 1976. Comparison of the photosynthetic characteristics of three submersed aquatic plants. Plant Physiology 58: 761–768.CrossRefPubMedPubMedCentralGoogle Scholar
  55. Vestergaard, O. & K. Sand-Jensen, 2000. Alkalinity and trophic state regulate aquatic plant distribution in Danish Lakes. Aquatic Botany 67: 85–107.CrossRefGoogle Scholar
  56. Wang, T., J. T. Hu, C. H. Liu & D. Yu, 2017. Soil type can determine invasion success of Eichhornia crassipes. Hydrobiologia 788: 281–291.CrossRefGoogle Scholar
  57. Wetzel, R. G., 2001. Limnology: Lake and River Ecosystems. Academic Press, San Diego: 1006p.Google Scholar
  58. Wright, R. F., J. Aherne, K. Bishop, P. J. Dillon, M. Erlandsson, C. D. Evans, M. Forsius, D. W. Hardekopf, R. C. Helliwell, J. Hruška, M. Hutchins, Ø. Kaste, J. Kopácek, P. Krám, H. Laudon, F. Moldan, M. Rogora, A. M. S. Sjøeng & H. A. de Wit, 2010. Interaction of climate change and acid deposition. In Kernan, M., R. W. Battarbee & B. Moss (eds), Climate Change Impacts on Freshwater Ecosystems. Blackwell, London: 152–179.CrossRefGoogle Scholar
  59. Wu, Z., J. Zuo, J. Ma, J. Wu, S. Cheng & W. Liang, 2007. Establishing submersed macrophytes via sinking and colonization of shoot fragments clipped off manually. Wuhan University Journal of Natural Sciences 12: 553–557.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • José Vitor Botter Fasoli
    • 1
  • Roger Paulo Mormul
    • 2
  • Eduardo Ribeiro Cunha
    • 2
  • Sidinei Magela Thomaz
    • 2
  1. 1.Universidade Federal de Mato Grosso do Sul - UFMSChapadão do SulBrazil
  2. 2.Universidade Estadual de Maringá, DBI/Nupélia/PEAMaringáBrazil

Personalised recommendations