Advertisement

Hydrobiologia

, Volume 814, Issue 1, pp 191–203 | Cite as

Effects of resource pulse magnitude on nutrient availability, productivity, stability, and food web dynamics in experimental aquatic ecosystems

  • Michael J. Weber
  • Michael L. Brown
Primary Research Paper

Abstract

Resource pulses provide short-duration, large-magnitude resources that influence ecosystem productivity, structure, and function. However, little empirical evidence is available evaluating how lake ecosystems respond to varying resource pulse magnitudes. We used mesocosms inoculated with primary producers and consumers to compare resource pulses of 0, 25, 50, 100, and 250 kg/ha of common carp Cyprinus carpio to simulate post-winterkill fish biomass in shallow lakes. Ecosystem responses to a gradient of resource pulse magnitudes typically had the greatest effects on nutrient availability and primary producers with fewer detectable effects for consumers. Total phosphorus, total Kjeldahl nitrogen, nitrate, phytoplankton, and periphyton productions increased as a result of the resource pulse, whereas copepods were the only consumer observed to elicit a positive response. In contrast, pulse magnitude had little effect on ecosystem stability, trophic position, or energy flow, potentially due to the low biomass of pulse magnitudes introduced. Resource pulses of moderate or large size generally increased nutrient availability and primary productivity while decreasing water clarity, suggesting that resource pulses can be an important factor influencing shallow eutrophic lakes but that effects may not be proportional to pulse size.

Keywords

Disturbance Decomposition Energy flow Eutrophication Food webs Stable isotopes Shallow lakes Winterkill 

Notes

Acknowledgements

We thank the technicians who participated during data collection and processing for this project. Partial funding for this project was provided through the Federal Aid in Sport Fish Restoration Act Study 1513 (Project F-15-R-42) administered through the South Dakota Department of Game, Fish and Parks and the South Dakota Agricultural Experiment Station.

References

  1. Anderson, W. B. & G. A. Polis, 1999. Nutrient fluxes from water to land: seabirds affect plant nutrient status on Gulf of California islands. Oecologia 118: 324–332.CrossRefPubMedGoogle Scholar
  2. Carpenter, S. R., D. Ludwig & W. A. Brock, 1999. Management of eutrophication for lakes subject to potentially irreversible change. Ecological Applications 9: 751–771.CrossRefGoogle Scholar
  3. Chaloner, D. T., M. S. Wipfli & J. P. Caouette, 2002. Mass loss and macroinvertebrate colonization of Pacific salmon carcasses in south-eastern Alaskan streams. Freshwater Biology 47: 263–273.CrossRefGoogle Scholar
  4. Chen, G. J., D. T. Selbie, B. P. Finney, D. E. Schindler, L. Bunting, P. R. Leavitt & I. Gregory-Eaves, 2011. Long-term zooplankton responses to nutrient and consumer subsidies arising from migratory sockeye salmon Oncorhynchus nerka. Oikos 120: 1317–1326.CrossRefGoogle Scholar
  5. Cottingham, K. L., S. Glaholt & A. C. Brown, 2004. Zooplankton community structure affects how phytoplankton respond to nutrient pulses. Ecology 85: 158–171.CrossRefGoogle Scholar
  6. Fry, B., 2006. Stable isotope ecology. Springer, New York.CrossRefGoogle Scholar
  7. Gende, S. M., R. T. Edwards, M. F. Willson & M. S. Wipfli, 2002. Pacific salmon in aquatic and terrestrial ecosystems. BioScience 52: 917–928.CrossRefGoogle Scholar
  8. Holt, R. D., 2008. Theoretical perspectives on resource pulses. Ecology 89: 671–681.CrossRefPubMedGoogle Scholar
  9. Hughes, T. P., 1994. Catastrophes, phase shifts, and large-scale degradation of a Caribbean coral reef. Science 265: 1547–1551.CrossRefPubMedGoogle Scholar
  10. Huxel, G. R. & K. McCann, 1998. Food web stability: the influence of trophic flows across habitats. American Naturalist 152: 460–469.CrossRefPubMedGoogle Scholar
  11. Huxel, G. R., K. McCann & G. A. Polis, 2002. Effects of partitioning allochthonous and autochthonous resources on food web stability. Ecological Research 17: 419–432.CrossRefGoogle Scholar
  12. Janetski, D. J., D. T. Chaloner, S. D. Tiegs & G. A. Lamberti, 2009. Pacific salmon effects on stream ecosystems: a quantitative synthesis. Oecologia 159: 583–595.CrossRefPubMedGoogle Scholar
  13. Kitchell, J. F., J. F. Koonce & P. S. Tennis, 1975. Phosphorus flux through fishes. Ver. Int. Ver. Limn. 19: 2478–2484.Google Scholar
  14. Leroux, S. J. & M. Loreau, 2008. Subsidy hypothesis and strength of trophic cascades across ecosystems. Ecology Letters 11: 1147–1156.CrossRefPubMedGoogle Scholar
  15. Magnuson, J. J., C. A. Paszkowski, F. J. Rahel, & W. M. Tonn, 1989. Fish ecology in severe environments of small isolated lakes in northern Wisconsin, In Sharitz, R. R., & J. W. Gibson (eds), Freshwater wetlands and wildlife. Office of Scientific and Technical Information, Department of Energy Symposium Series 61, Oak Ridge, Tennessee: 487–515.Google Scholar
  16. Marczak, L. B., R. M. Thompson & J. S. Richardson, 2007. Meta-analysis: trophic level, habitat, and productivity shape the food web effects of resource subsidies. Ecology 88: 140–148.CrossRefPubMedGoogle Scholar
  17. Naiman, R. J., R. E. Bilby, D. E. Schindler & J. M. Helfield, 2002. Pacific salmon, nutrients, and the dynamics of freshwater and riparian ecosystems. Ecosystems 5: 399–417.CrossRefGoogle Scholar
  18. Nowlin, W. H., M. J. Gonzalez, M. J. Vanni, M. H. H. Stevens, M. W. Fields & J. J. Valentei, 2007. Allochthonous subsidy of periodical cicadas affects the dynamics and stability of pond communities. Ecology 88: 2174–2186.CrossRefPubMedGoogle Scholar
  19. Nowlin, W. H., M. J. Vanni & L. H. Yang, 2008. Comparing resource pulses in aquatic and terrestrial ecosystems. Ecology 89: 647–659.CrossRefPubMedGoogle Scholar
  20. Panek, F. M, 1987. Biology and ecology of carp. In Cooper, E. L. (ed.), Carp in North America. American Fisheries Society: 1–15.Google Scholar
  21. Polis, G. A., M. E. Power & G. Huxel, 2004. Food webs at the landscape level. University of Chicago Press, Chicago.Google Scholar
  22. Rosenzweig, M. L. K., 1971. Paradox of enrichment: Destabilization of exploitation ecosystem in ecological time. Science 171: 385–387.CrossRefPubMedGoogle Scholar
  23. SAS Institute Inc, 2013. SAS/STAT® 13.1 User’s Guide. SAS Institute Inc., Cary, NC.Google Scholar
  24. Scheffer, M., S. H. Hosper, M.-L. Meijer, B. Moss & E. Jeppesen, 1993. Alternative equilibria in shallow lakes. Trends in Ecology and Evolution 8: 275–279.CrossRefPubMedGoogle Scholar
  25. Scheffer, M., S. Carpenter, J. A. Foley, C. Folke & B. Walker, 2001. Catastrophic shifts in ecosystems. Nature 413: 591–596.CrossRefPubMedGoogle Scholar
  26. Scheffer, M., E. H. van Nes, M. Holmgren & T. Hughes, 2008. Pulse-driven loss of top-down control: the critical rate hypothesis. Ecosystems 11: 236–237.CrossRefGoogle Scholar
  27. Schoenebeck, C. W., M. L. Brown, S. R. Chipps & D. R. German, 2012. Nutrient and algal responses to fish-derived nutrient subsidies in eutrophic lakes prone to winterkill. Lake and Reservoir Management 28: 189–199.CrossRefGoogle Scholar
  28. Schuldt, J. A. & A. E. Hershey, 1995. Effect of salmon carcass decomposition on Lake Superior tributary streams. Journal of the North American Benthological Society 14: 259–268.CrossRefGoogle Scholar
  29. Sibly, R. M., D. Barker, J. Hone & M. Pagel, 2007. On the stability of populations of mammals, birds, fish, and insects. Ecology Letters 10: 970–976.CrossRefPubMedGoogle Scholar
  30. Spivak, A. C., M. J. Vanni & E. M. Mette, 2011. Moving on up: can results from simple aquatic mesocosm experiments be applied across broad spatial scales? Freshwater Biology 56: 279–291.CrossRefGoogle Scholar
  31. Stevenson, R. J. & L. L. Bahls, 1999. Rapid bioassessment protocols for use in wadeable streams and rivers: Periphyton, benthic macroinvertebrates, and fish. In Barbour, M. T., J. Gerritsen & B. D. Snyder (eds), EPA 841-B-99-002. United States Environmental Protection Agency, Washington: 6–22.Google Scholar
  32. Sweetman, J. N. & B. P. Finney, 2003. Differential responses of zooplankton populations (Bosmina longirostris) to fish predation and nutrient-loading in an introduced and a natural sockeye salmon nursery lake on Kodiak Island, Alaska, USA. Journal of Paleolimnology 30: 183–193.CrossRefGoogle Scholar
  33. Tonn, W. M., 1990. Climate change and fish communities: a conceptual framework. Transactions of the American Fisheries Society 119: 337–352.CrossRefGoogle Scholar
  34. U.S. EPA (Environmental Protection Agency), 1994. Methods for chemical analysis of water and wastes. U.S. Environmental Protection Agency, National Environmental Research Center, Cincinnati, Ohio. EPA 600/4-79-020.Google Scholar
  35. Verspoor, J. J., D. C. Braun & J. D. Reynolds, 2010. Quantitative links between Pacific salmon and stream periphyton. Ecosystems 13: 1020–1034.CrossRefGoogle Scholar
  36. Verspoor, J. J., D. C. Braun, M. M. Stubbs & J. D. Reynolds, 2011. Persistent ecological effects of a salmon-derived nutrient pulse on stream invertebrate communities. Ecosphere 2: 1–17.CrossRefGoogle Scholar
  37. Walters, A. W., R. T. Barnes & D. M. Post, 2009. Anadromous alewives (Alosa pseudoharengus) contribute marine-derived nutrients to coastal stream food webs. Canadian Journal of Fisheries and Aquatic Sciences 66: 439–448.CrossRefGoogle Scholar
  38. Weber, M. J. & M. L. Brown, 2013. Continuous, pulsed, and disrupted nutrient subsidy effects on ecosystem productivity, stability, and energy flow. Ecosphere 4: 27.CrossRefGoogle Scholar
  39. Weber, M. J. & M. L. Brown, 2016. Effects of resource pulses on nutrient availability, ecosystem productivity, and temporal variability following stochastic disturbances in eutrophic glacial lakes. Hydrobiologia 771: 165–177.CrossRefGoogle Scholar
  40. West, D. C., A. W. Walters, S. Gephard & D. M. Post, 2010. Nutrient loading by anadromous alewife (Alosa pseudoharengus): contemporary patterns and predictions for restoration efforts. Canadian Journal of Fisheries and Aquatic Sciences 67: 1211–1220.CrossRefGoogle Scholar
  41. Yang, L. H., J. L. Bastow, K. O. Spence & A. N. Wright, 2008. What can we learn from resource pulses? Ecology 89: 621–634.CrossRefPubMedGoogle Scholar
  42. Yang, L. H., K. F. Edwards, J. E. Byrnes, J. L. Bastow, A. N. Wright & K. O. Spence, 2010. A meta-analysis of resource pulse-consumer interactions. Ecological Monographs 80: 125–151.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Natural Resource ManagementSouth Dakota State UniversityBrookingsUSA
  2. 2.Natural Resource Ecology and ManagementAmesUSA

Personalised recommendations