Skip to main content

Advertisement

Log in

Post-fire debris flows delay recovery and create novel headwater stream macroinvertebrate communities

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Wildfire is one of the most important global agents of disturbance affecting terrestrial and riparian vegetation. Post-fire vegetation changes can alter stream resource pathways and cause channel reorganization and sediment-laden debris flows. Yet, little is known about macroinvertebrate community recovery following wildfire and debris flows and how these communities fit into the broader stream community mosaic. We examined the effects of wildfire and debris flows on relative resource availability and macroinvertebrate assemblages at 31 streams in Idaho, USA using a space-for-time study design. Wildfire and debris flows had no apparent effects on resource standing crop. However, macroinvertebrate communities among unburned, burned, and debris flow streams were quite different. Compared to unburned streams, biomass and density were higher at streams which experienced debris flows ~ 10 years post fire, but exhibited the near-complete absence of macroinvertebrates at streams with more recent debris flows. Stream macroinvertebrate communities impacted by debris flows were distinct compared to unburned and burned streams which did not experience debris flows. When found, differences in macroinvertebrate biomass, density, richness, and community structures were largely due to the incidence of debris flows. Debris flows removed the riparian vegetation, slowing its recovery, cascading to affect macroinvertebrate community structure into the long term.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Acuña, V., A. Giorgi, I. Muñoz, U. Uehlinger & S. Sabater, 2004. Flow extremes and benthic organic matter shape the metabolism of a headwater Mediterranean stream. Freshwater Biology 49: 960–971.

    Article  Google Scholar 

  • APHA, 2005. Standard Methods for the Examination of Water and Wastewater. American Public Health Association, Washington.

    Google Scholar 

  • Arkle, R. S. & D. S. Pilliod, 2010. Prescribed fires as ecological surrogates for wildfires: a stream and riparian perspective. Forest Ecology and Management 259: 893–903.

    Article  Google Scholar 

  • Arkle, R. S., D. S. Pilliod & K. Strickler, 2010. Fire, flow and dynamic equilibrium in stream macroinvertebrate communities. Freshwater Biology 55: 299–314.

    Article  Google Scholar 

  • Atkinson, B. L., M. R. Grace, B. T. Hart & K. E. N. Vanderkruk, 2008. Sediment instability affects the rate and location of primary production and respiration in a sand-bed stream. Journal of the North American Benthological Society 27: 581–592.

    Article  Google Scholar 

  • Benda, L., C. Veldhuisen & J. Black, 2003. Debris flows as agents of morphological heterogeneity at low-order confluences, Olympic Mountains, Washington. Bulletin of the Geological Society of America 115: 1110–1121.

    Article  Google Scholar 

  • Bond, W. J. & J. E. Keeley, 2005. Fire as a global “herbivore”: the ecology and evolution of flammable ecosystems. Trends in Ecology and Evolution 20: 387–394.

    Article  PubMed  Google Scholar 

  • Burton, T. A., 2005. Fish and stream habitat risks from uncharacteristic wildfire: observations from 17 years of fire-related disturbances on the Boise National Forest, Idaho. Forest Ecology and Management 211: 140–149.

    Article  Google Scholar 

  • Clarke, K. R. & R. M. Warwick, 2001. Change in marine communities: an approach to statistical analysis and interpretation, 2nd ed. PRIMER-E, Plymouth UK.

    Google Scholar 

  • Cooper, S. D., H. M. Page, S. W. Wiseman, K. Klose, D. Bennett, T. Even, S. Sadro, C. E. Nelson & T. L. Dudley, 2015. Physicochemical and biological responses of streams to wildfire severity in riparian zones. Freshwater Biology 60: 2600–2619.

    Article  Google Scholar 

  • Cover, M. R., J. A. De La Fuente & V. H. Resh, 2010. Catastrophic disturbances in headwater streams: the long-term ecological effects of debris flows and debris floods in the Klamath Mountains, northern California. Canadian Journal of Fisheries and Aquatic Sciences 67: 1596–1610.

    Article  Google Scholar 

  • Dunham, J. B., A. E. Rosenberger, C. H. Luce & B. E. Rieman, 2007. Influences of wildfire and channel reorganization on spatial and temporal variation in stream temperature and the distribution of fish and amphibians. Ecosystems 10: 335–346.

    Article  Google Scholar 

  • Dwire, K. A. & J. B. Kauffman, 2003. Fire and riparian ecosystems in landscapes of the western USA. Forest Ecology and Management 178: 61–74.

    Article  Google Scholar 

  • Gotelli, N. J. & R. K. Colwell, 2001. Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecology Letters 4: 379–391.

    Article  Google Scholar 

  • Gresswell, R. E., 1999. Fire and aquatic ecosystems in forested biomes of North America. Transactions of the American Fisheries Society 128: 193–221.

    Article  Google Scholar 

  • Halofsky, J. E. & D. E. Hibbs, 2009. Controls on early post-fire woody plant colonization in riparian areas. Forest Ecology and Management 258: 1350–1358.

    Article  Google Scholar 

  • Harris, H. E., C. V. Baxter & J. M. Davis, 2015. Debris flows amplify effects of wildfire on magnitude and composition of tributary subsidies to mainstem habitats. Freshwater Science 34: 1457–1467.

    Article  Google Scholar 

  • Hessburg, P. F. & J. K. Agee, 2003. An environmental narrative of Inland Northwest United States forests, 1800-2000. Forest Ecology and Management 178: 23–59.

    Article  Google Scholar 

  • Holm-Hansen, O. & B. Riemann, 1978. Chlorophyll a determination: improvements in methodology. Oikos 30: 438–447.

    Article  CAS  Google Scholar 

  • Isaak, D., C. Luce, B. Rieman, D. Nagel, E. Peterson, D. Horan, S. Parkes & G. Chandler, 2010. Effects of climate change and recent wildfires on stream temperature and thermal habitat for two salmonids in a mountain river network. Ecological Applications 20: 1350–1371.

    Article  PubMed  Google Scholar 

  • Jackson, B. K., S. M. P. Sullivan & R. L. Malison, 2012. Wildfire severity mediates fluxes of plant material and terrestrial invertebrates to mountain streams. Forest Ecology and Management 278: 27–34.

    Article  Google Scholar 

  • Klose, K., S. D. Cooper & D. M. Bennett, 2015. Effects of wildfire on stream algal abundance, community structure, and nutrient limitation. Freshwater Science 34: 1494–1509.

    Article  Google Scholar 

  • Koetsier, P., Q. M. Tuckett & J. White, 2007. Present effects of past wildfires on the diets of stream fish. Western North American Naturalist 67: 429–438.

    Article  Google Scholar 

  • Koetsier, P., T. R. B. Krause & Q. M. Tuckett, 2010. Present effects of past wildfires on leaf litter breakdown in stream ecosystems. Western North American Naturalist 70: 164–174.

    Article  Google Scholar 

  • Krawchuk, M. A., M. A. Moritz, M. A. Parisien, J. Van Dorn & K. Hayhoe, 2009. Global pyrogeography: the current and future distribution of wildfire. PLoS ONE 4: e5102.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lamberti, G. A. & V. H. Resh, 1983. Stream periphyton and insect herbivores: an experimental study of grazing by a caddisfly population. Ecology 64: 1124–1135.

    Article  Google Scholar 

  • Lamberti, G. A., S. V. Gregory, L. R. Ashkenas, R. C. Wildman & K. M. S. Moore, 1991. Stream ecosystem recovery following a catastrophic debris flow. Canadian Journal of Fisheries and Aquatic Sciences 48: 196–208.

    Article  Google Scholar 

  • Liu, Y., J. Stanturf & S. Goodrick, 2010. Trends in global wildfire potential in a changing climate. Forest Ecology and Management 259: 685–697.

    Article  Google Scholar 

  • Magurran, A. E., 2004. Measuring Biological Diversity. Blackwell Science Ltd, Oxford.

    Google Scholar 

  • Malison, R. L. & C. V. Baxter, 2010. The fire pulse: wildfire stimulates flux of aquatic prey to terrestrial habitats driving increases in riparian consumers. Canadian Journal of Fisheries and Aquatic Sciences 67: 570–579.

    Article  Google Scholar 

  • Matthaei, C. H., K. A. Peacock & C. R. Townsend, 1999. Scour and fill patterns in a New Zealand stream and potential implications for invertebrate refugia. Freshwater Biology 42: 41–57.

    Article  Google Scholar 

  • Merritt, R. W. & K. W. Cummins, 1996. An Introduction to the Aquatic Insects of North America. Kendall/Hunt Publishing Company, Dubuque.

    Google Scholar 

  • Meyer, G. A. & J. L. Pierce, 2003. Climatic controls on fire-induced sediment pulses in Yellowstone National Park and central Idaho: a long-term perspective. Forest Ecology and Management 178: 89–104.

    Article  Google Scholar 

  • Meyer, G. A., J. L. Pierce, S. H. Wood & A. J. T. Jull, 2001. Fire, storms, and erosional events in the Idaho batholith. Hydrological Processes 15: 3025–3038.

    Article  Google Scholar 

  • Mihuc, T. B. & G. W. Minshall, 1995. Trophic generalists vs. trophic specialists: implications for food web dynamics in post-fire streams. Ecology 76: 2361–2372.

    Article  Google Scholar 

  • Minshall, G. W., 2003. Responses of stream benthic macroinvertebrates to fire. Forest Ecology and Management 178: 155–161.

    Article  Google Scholar 

  • Minshall, G. W., J. T. Brock & J. D. Varley, 1989. Wildfires and Yellowstone’s stream ecosystems: a temporal perspective shows that aquatic recovery parallels forest succession. BioScience 39: 707–715.

    Article  Google Scholar 

  • Minshall, G. W., C. T. Robinson & D. E. Lawrence, 1997. Postfire responses of lotic ecosystems in Yellowstone National Park, USA. Canadian Journal of Fisheries and Aquatic Sciences 54: 2509–2525.

    Article  Google Scholar 

  • Minshall, G. W., J. T. Brock, D. A. Andrews & C. T. Robinson, 2001. Water quality, substratum and biotic responses of five central Idaho (USA) streams during the first year following the Mortar Creek fire. International Journal of Wildland Fire 10: 185–199.

    Article  Google Scholar 

  • Oksanen, J., F. G. Blanchet, M. Friendly, R. Kindt, P. Legendre, D. McGlinn, P. R. Minchin, R. B. O’Hara, G. L. Simpson, P. Solymus, M. H. H. Stevens, E. Szoecs, & H. Wagner, 2017. Community Ecology Package, Package “vegan”.

  • Oliver, A. A., M. T. Bogan, D. B. Herbst & R. A. Dahlgren, 2012. Short-term changes in-stream macroinvertebrate communities following a severe fire in the Lake Tahoe basin, California. Hydrobiologia 694: 117–130.

    Article  Google Scholar 

  • Parise, M. & S. H. Cannon, 2012. Wildfire impacts on the processes that generate debris flows in burned watersheds. Natural Hazards 61: 217–227.

    Article  Google Scholar 

  • Romme, W. H., M. S. Boyce, R. Gresswell, E. H. Merrill, G. W. Minshall, C. Whitlock & M. G. Turner, 2011. Twenty years after the 1988 Yellowstone fires: lessons about disturbance and ecosystems. Ecosystems 14: 1196–1215.

    Article  Google Scholar 

  • Rosenberger, A. E., J. B. Dunham, J. M. Buffington & M. S. Wipfli, 2011. Persistent effects of wildfire and debris flows on the invertebrate prey base of rainbow trout in Idaho streams. Northwest Science 85: 55–63.

    Article  Google Scholar 

  • Rosenberger, A. E., J. B. Dunham, & H. Neville, 2012. Fish life histories, wildfire, and resilience: A case study of rainbow trout in the Boise River, Idaho. IN: Building resilient landscapes, streams, and managers. General Technical Report. RMRS-GTR-290. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 187–194.

  • Rosenberger, A. E., J. B. Dunham, J. R. Neuswanger, F. Steven, A. E. Rosenberger, J. B. Dunham, J. R. Neuswanger & F. Steven, 2015. Legacy effects of wildfire on stream thermal regimes and rainbow trout ecology: an integrated analysis of observation and individual-based models. Freshwater Science 34: 1571–1584.

    Article  Google Scholar 

  • Rugenski, A. T. & G. W. Minshall, 2014. Climate-moderated responses to wildfire by macroinvertebrates and basal food resources in montane wilderness streams. Ecosphere 5: 1–24.

    Article  Google Scholar 

  • Spencer, C. N., K. O. Gabel & F. R. Hauer, 2003. Wildfire effects on stream food webs and nutrient dynamics in Glacier National Park, USA. Forest Ecology and Management 178: 141–153.

    Article  Google Scholar 

  • Steward, K. W. & B. P. Stark, 2002. Nymphs of North American Stonefly Genera (Plecoptera). The Caddis Press, Columbus.

    Google Scholar 

  • Tank, J. L. & W. K. Dodds, 2003. Nutrient limitation of epilithic and epixylic biofilms in ten North American streams. Freshwater Biology 48: 1031–1049.

    Article  CAS  Google Scholar 

  • Team, R. D. C., & R Development Core Team, 2014. R: A language and environment for statistical computing. R Foundation for Statistical Computing Vienna Austria. R Foundation for Statistical Computing, Vienna, Austria, http://www.r-project.org/.

  • Tuckett, Q. M. & P. Koetsier, 2016. Mid- and long-term effects of wildfire and debris flows on stream ecosystem metabolism. Freshwater Science 35: 445–456.

    Article  Google Scholar 

  • Verkaik, I., M. Rieradevall, S. D. Cooper, J. M. Melack, T. L. Dudley & N. Prat, 2013. Fire as a disturbance in mediterranean climate streams. Hydrobiologia 719: 353–382.

    Article  CAS  Google Scholar 

  • Verkaik, I., P. Reich, N. Prat, M. Rieradevall & C. V. Baxter, 2015. Stream macroinvertebrate community responses to fire: are they the same in different fire-prone biogeographic regions? Freshwater Science 34: 1527–1541.

    Article  Google Scholar 

  • Vieira, N. K. M., W. H. Clements, L. S. Guevara & B. F. Jacobs, 2004. Resistance and resilience of stream insect communities to repeated hydrologic disturbances after a wildfire. Freshwater Biology 49: 1243–1259.

    Article  Google Scholar 

  • Vieira, N. K. M., T. R. Barnes & K. A. Mitchell, 2011. Effects of wildfire and postfire floods on stonefly detritivores of the Pajarito Plateau, New Mexico. Western North American Naturalist 71: 257–270.

    Article  Google Scholar 

  • Wallace, J. B. & J. W. Grubaugh, 1996. Transport and storage of FPOM. In Hauer, F. R. & G. A. Lamberti (eds), Methods in Stream Ecology. Academic Press, San Diego: 192–215.

    Google Scholar 

  • Westerling, A. L., H. G. Hidalgo, D. R. Cayan & T. W. Swetnam, 2006. Warming and earlier spring increase western U.S. forest wildfire activity. Science 313: 940–943.

    Article  CAS  PubMed  Google Scholar 

  • Whitney, J. E., K. B. Gido, T. J. Pilger, D. L. Propst, F. Thomas, J. E. Whitney, K. B. Gido, T. J. Pilger, D. L. Propst & T. F. Turner, 2015. Consecutive wildfires affect stream biota in cold- and warmwater dryland river networks. Freshwater Science 34: 1510–1526.

    Article  Google Scholar 

  • Wiggins, G. B., 1996. Larvae of the North American Caddisfly Genera (Trichoptera). University of Toronto Press, Toronto.

    Google Scholar 

Download references

Acknowledgements

We thank the Boise Aquatic Sciences Laboratory of the United State Department of Agriculture Forest Service, Rocky Mountain Research Station, especially Jason Dunham, David Nagel, and Amanda Rosenberger. Field assistance was provided by Amber Fonner, Theresa Krause, Cindy Valdivia, and Joshua White. Funding was provided by the United States Department of Agriculture through a grant administered by the Cooperative State Research, Education, and Extension Service (CSREES). Additional funding was provided by the Boise State University through the Dan Montgomery Grant for Ecological Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quenton M. Tuckett.

Additional information

Handling editor: Checo Colón-Gaud

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tuckett, Q.M., Koetsier, P. Post-fire debris flows delay recovery and create novel headwater stream macroinvertebrate communities. Hydrobiologia 814, 161–174 (2018). https://doi.org/10.1007/s10750-018-3534-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-018-3534-y

Keywords

Navigation