Advertisement

Hydrobiologia

, Volume 813, Issue 1, pp 213–222 | Cite as

Evaluation of intracoelomic tagging of tainha, Mugil liza (Valenciennes, 1836), under laboratory conditions

  • Igor Emiliano Gomes Pinheiro
  • Mônica Mathias Costa Muelbert
  • Virgínia Fonseca Pedrosa
  • Luis Alberto Romano
  • José Henrique Muelbert
Primary Research Paper

Abstract

The aim of our study was to evaluate the effects of implanted dummy acoustic transmitters in the tainha Mugil liza. Three treatments (replicated at a density of 6 fish/tank) were tested for their effects on fish survival (S), maintenance of vital rates (mass), physiological response to surgery (i.e., plasma levels of the stress hormone cortisol and hemoglobin concentration) and tag retention during 30 days of experiment: (1) Control treatment; (2) Sham control treatment; and (3) Tagged treatment. Only one fish from Sham control treatment died, and one tag was expelled through the incision in Tagged treatment. Growth rate parameters (i.e., absolute growth rate, condition factor, and weight) increased over the 30 days’ experiment in all treatments. Our results indicate that surgical implantation of transmitters into the peritoneal cavity is a viable option for acoustic telemetry studies of tainhas.

Keywords

Acoustic telemetry Intracoelomic implantation Tag retention and tag effects 

Notes

Acknowledgements

This study is part of the Ocean Tracking Network – Brazil, a programme funded by the Brazilian Ministry for Science, Tecnolgy, Inovation and Communication through the Brazilian National Research Council (Conselho Nacional de Desenvolvimento Cientifico e Tecnologico – CNPq, Grant No. 400615/2013-4); and fellowships to JHM (Grant No. 310047/2016-1) and IEGP (Grant No. 152394/2016-8). MMCM and VFP were supported by fellowships from CAPES (Ministry of Education). Logistic support was also provided by EMA/FURG.

References

  1. Adams, N. S., D. W. Rondorf, S. D. Evans & J. E. Kelly, 1998a. Effects of surgically and gastrically implanted radio transmitters on growth and feeding behavior of juvenile Chinook Salmon. Transactions of the American Fisheries Society 127: 128–136.CrossRefGoogle Scholar
  2. Adams, N. S., D. W. Rondorf, S. D. Evans, J. E. Kelly & R. W. Perry, 1998b. Effects of surgically and gastrically implanted radio transmitters on swimming performance and predator avoidance of juvenile chinook salmon (Oncorhynchus tshawytscha). Canadian Journal of Fisheries and Aquatic Sciences 55: 781–787.CrossRefGoogle Scholar
  3. Ammann, A. J., C. J. Michel & R. B. MacFarlane, 2013. The effects of surgically implanted acoustic transmitters on laboratory growth, survival and tag retention in hatchery yearling Chinook salmon. Environmental Biology of Fishes 96: 135–143.CrossRefGoogle Scholar
  4. ANEXO II IN MMA no 05 21/05/2004. Instrução normativa n° 005, de 21 de maio de 2004.Google Scholar
  5. Anglea, S. M., D. R. Geist, R. S. Brown, K. A. Deters & R. D. McDonald, 2004. Effects of acoustic transmitters on swimming performance and predator avoidance of juvenile chinook salmon. North American Journal of Fisheries Management 24: 162–170.CrossRefGoogle Scholar
  6. Bridger, C. J. & R. K. Booth, 2003. The effects of biotelemetry transmitter presence and attachment procedures on fish physiology and behavior. Reviews in Fisheries Science 11: 13–34.CrossRefGoogle Scholar
  7. Brown, R. S., S. J. Cooke, W. G. Anderson & R. S. McKinley, 1999. Evidence to challenge the “2% rule” for biotelemetry. North American Journal of Fisheries Management 19: 867–871.CrossRefGoogle Scholar
  8. Brown, R. S., D. R. Geist, K. A. Deters & A. Grassell, 2006. Effects of surgically implanted acoustic transmitters > 2% of body mass on the swimming performance, survival and growth of juvenile sockeye and chinook salmon. Journal of Fish Biology 69: 1626–1638.CrossRefGoogle Scholar
  9. Brown, H., M. Benfield, S. Keenan & S. Powers, 2010a. Movement patterns and home ranges of a pelagic carangid fish, Caranx crysos, around a petroleum platform complex. Marine Ecology Progress Series 403: 205–218.CrossRefGoogle Scholar
  10. Brown, R. S., R. A. Harnish, K. M. Carter, J. W. Boyd, K. A. Deters & M. B. Eppard, 2010b. An evaluation of the maximum tag burden for implantation of acoustic transmitters in juvenile chinook salmon. North American Journal of Fisheries Management 30: 499–505.CrossRefGoogle Scholar
  11. Butler, G. L., B. MacKay, S. J. Rowland & B. C. Pease, 2009. Retention of intra-peritoneal transmitters and post-operative recovery of four Australian native fish species. Marine and Freshwater Research 60: 361–370.CrossRefGoogle Scholar
  12. Caputo, M., C. M. O’Connor, C. T. Hasler, K. C. Hanson & S. J. Cooke, 2009. Long-term effects of surgically implanted telemetry tags on the nutritional physiology and condition of wild freshwater fish. Diseases of Aquatic Organisms 84(1): 35–41.CrossRefPubMedGoogle Scholar
  13. Cervigón, F., 1993. Los peces marinos de Venezuela. Fundación Científica Los Roques, Caracas, Venezuela 2: 497p.Google Scholar
  14. Chittenden, C. M., K. G. Butterworth, K. F. Cubitt, M. C. Jacobs, A. Ladouceur, D. W. Welch & R. S. McKinley, 2009. Maximum tag to body size ratios for an endangered coho salmon (O. kisutch) stock based on physiology and performance. Environmental Biology of Fishes 84: 129–140.CrossRefGoogle Scholar
  15. Connors, K. B., D. Scruton, J. A. Brown & R. S. McKinley, 2002. The effects of surgically-implanted dummy radio transmitters on the behaviour of wild Atlantic salmon smolts. Hydrobiologia 483: 231–237.CrossRefGoogle Scholar
  16. Cooke, S. J., S. J. Iverson, M. J. W. Stokesbury, S. G. Hinch, A. T. Fisk, D. L. VanderZwaag, R. Apostle & F. Whoriskey, 2011a. Ocean Tracking Network Canada: a network approach to addressing critical issues in fisheries and resource management with implications for ocean governance. Fisheries 36: 583–592.CrossRefGoogle Scholar
  17. Cooke, S. J., C. M. Woodley, M. B. Eppard, R. S. Brown & J. L. Nielsen, 2011b. Advancing the surgical implantation of electronic tags in fish: a gap analysis and research agenda based on a review of trends in intracoelomic tagging effects studies. Reviews in Fish Biology and Fisheries 21: 127–151.CrossRefGoogle Scholar
  18. Donaldson, M. R., S. G. Hinch, C. D. Suski, A. T. Fisk, M. R. Heupel & S. J. Cooke, 2014. Making connections in aquatic ecosystems with acoustic telemetry monitoring. Frontiers in Ecology and the Environment 12: 565–573.CrossRefGoogle Scholar
  19. Frost, D. A., R. L. McComas & B. P. Sandford, 2010. The effects of a surgically implanted microacoustic tag on growth and survival in subyearling fall chinook salmon. Transactions of the American Fisheries Society 139: 1192–1197.CrossRefGoogle Scholar
  20. Garbin, T., J. P. Castello & P. G. Kinas, 2014. Age, growth, and mortality of the mullet Mugil liza in Brazil’s southern and southeastern coastal regions. Fisheries Research 149: 61–68.CrossRefGoogle Scholar
  21. Gehrke, P. C., D. M. Gilligan & M. Barwick, 2001. Fish communities and migration in the Shoalhaven River – Before construction of a fishway. New South Wales Fisheries Final Report Series No. 26. New South Wales Fisheries, Port Stephens.Google Scholar
  22. Hussey, N. E., S. T. Kessel, K. Aarestrup, S. J. Cooke, P. D. Cowley, A. T. Fisk, R. G. Harcourt, K. N. Holland, S. J. Iverson, J. F. Kocik, J. E. Mills Flemming & F. G. Whoriskey, 2015. Aquatic animal telemetry: a panoramic window into the underwater world. Science 348: 1255642.CrossRefPubMedGoogle Scholar
  23. ICMBIO/Ibama/Cepsul, 2007. I Relatório de reunião técnica para o ordenamento da pesca da tainha (Mugil platanus, M. liza) na região sudeste/sul do Brasil. Itajaí, Santa Catarina, Brazil.Google Scholar
  24. Jepsen, N., A. Koed, E. B. Thorstad & E. Baras, 2002. Surgical implantation of telemetry transmitters in fish: how much have we learned? Hydrobiologia 483: 239–248.CrossRefGoogle Scholar
  25. Jepsen, N., C. Schreck, S. Clements & E. B. Thorstad, 2005. A brief discussion on the 2% tag/bodymass rule of thumb. Aquatic telemetry: advances and applications. Proceedings of the Fifth Conference on Fish Telemetry hel in Europe. FAO/COISPA, Ustica, Italy: 255–259.Google Scholar
  26. Jepsen, N., M. Christoffersen & T. Munksgaard, 2008. The level of predation used as an indicator of tagging/handling effects. Fisheries Management and Ecology 15: 365–368.CrossRefGoogle Scholar
  27. Khalil, N. A., A. M. Hashem, A. A. E. Ibrahim & M. A. Mousa, 2012. Effect of stress during handling, seawater acclimation, confinement, and induced spawning on plasma ion levels and somatolactin-expressing cells in mature female Liza ramada. Journal of Experimental Zoology Part A 317: 410–424.CrossRefGoogle Scholar
  28. Lemos, V. M., A. S. Varela, P. R. Schwingel, J. H. Muelbert, J. P. Vieira, 2014. Migration and reproductive biology of (Teleostei: Mugilidae) in south Brazil. Journal of Fish Biology 85: 671–687.Google Scholar
  29. Luo, H., X. Duan, S. Liu & D. Chen, 2014. Effects of surgically implanted dummy ultrasonic transmitters on physiological response of bighead carp Hypophthalmichthys nobilis. Fish Physiology Biochemestry 40: 1521–1532.CrossRefGoogle Scholar
  30. Martinelli, T. L., H. C. Hansel & R. S. Shively, 1998. Growth and physiological responses to surgical and gastric radio transmitter implantation techniques in subyearling chinook salmon (Oncorhynchus tshawytscha). Hydrobiologia 371: 79–87.CrossRefGoogle Scholar
  31. Melnychuk, M. C., D. W. Welch & C. J. Walters, 2010. Spatio-temporal migration patterns of pacific salmon smolts in rivers and coastal marine waters. PLoS ONE 5: e12916.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Miranda-Filho, K. C., 1995. Efeito da amônia e nitrito no crescimento da tainha Mugil platanus (Pisces, Mugilidae). Revista Brasileira de Biologia 55: 45–50.Google Scholar
  33. Miranda-Filho, K., M. B. Tesser, L. A. Sampaio & H. M. Godinho, 2010. Tainha. In Baldisseroto, B. & L. C. Gomes (eds), Espécies nativas para a piscicultura no Brasil. Editora UFSM, Santa Maria: 541–552.Google Scholar
  34. Moore, A., I. C. Russell & E. C. E. Potter, 1990. The effects of intraperitoneally implanted dummy acoustic transmitters on the behaviour and physiology of juvenile Atlantic salmon, Salmo salar. Journal of Fish Biology 37: 713–721.CrossRefGoogle Scholar
  35. MPA, 2012. Boletim Estatístico da pesca e Aqüicultura – ano 2010. Ministério da pesca e aqüicultura, Ministério do Meio Ambiente, Brasília.Google Scholar
  36. MPA/MMA no 04 14/05/2015. Plano de getão para o uso sustentável da tainha, Mugil liza Valenciennes, 1836, no sudeste e sul do Brasil.Google Scholar
  37. Mulcahy, D. M., 2003. Surgical implantation of transmitters into fish. Ilar Journal 44: 295–306.CrossRefPubMedGoogle Scholar
  38. O’Dor, R. K. O. & M. J. W. Stokesbury, 2009. The Ocean Tracking Network – adding marine animal movements to the global ocean observing system. In Nielsen, J. L., H. Arrizabalaga, N. Fragoso, A. Hobday, M. Lutcavage & J. Sibert (eds), Tagging and Tracking of Marine Animals with Electronic Devices. Springer, Dordrecht: 91–100.CrossRefGoogle Scholar
  39. Okamoto, M., L. A. Sampaio & A. Maçada, 2008. Efeito da temperatura sobre a determinação do sexo e o crescimento de juvenis do linguado Paralichthys orbignyanus. Atlântica 28: 61–66.Google Scholar
  40. Poersch, L. H., M. H. S. Santos, K. M. Miranda- Filho & W. J. Wasielesky, 2007. Efeito agudo do nitrato sobre alevinos da tainha Mugil platanus (Pisces: Mugilidae). Boletim do Instituto de Pesca 33: 247–252.Google Scholar
  41. R Development Core Team, 2016. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing Vienna Austria, http://www.r-project.org/.
  42. Ramos, L. R. V., J. M. Monserrat, L. A. Romano, L. A. Sampaio, P. C. Abreu & M. B. Tesser, 2015. Effects of supplementing the diets of Mugil liza Valenciennes, 1836 juveniles with citrus pectin. Journal of Applied Ichthyology 31: 362–369.CrossRefGoogle Scholar
  43. Ranzani-Paiva, M. & C. Ishikawa, 1996. Haematological characteristics of freshwater-reared and wild mullet, Mugil platanus Günther (Osteichthyes, Mugilidae). Revista Brasileira de Zoologia 13: 561–568.CrossRefGoogle Scholar
  44. Ricker, W. E., 1975. Computation and interpretation of biological statistics of fish populations. Bulletin of the Fisheries Research Board of Canada 191: 401.Google Scholar
  45. Robertson, M. J., D. A. Scruton & J. A. Brown, 2003. Effects of surgically implanted transmitters on swimming performance, food consumption and growth of wild Atlantic salmon parr. Journal of Fish Biology 62: 673–678.CrossRefGoogle Scholar
  46. Rożyński, M., A. Kapusta, K. Demska-Zakęś, M. Hopko, A. Sikora & Z. Zakęś, 2017. The effects of surgically implanted dummy tags on the survival, growth performance, and physiology of pikeperch (Sander lucioperca). Fish Physiology and Biochemistry 43: 999–1010.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Silva, A. S. E., J. T. Lima & Q. S. Blanco, 2012. Hematologia em peixes (Revisão Bibliográfica). Revista Centauro 3: 24–32.Google Scholar
  48. Schoonyan, A., R. T. Kraus, M. D. Faust, C. S. Vandergoot, S. J. Cooke, H. A. Cook, T. A. Hayden & C. C. Krueger, 2017. Estimating incision healing rate for surgically implanted acoustic transmitters from recaptured fish. Animal Biotelemetry 5: 15.CrossRefGoogle Scholar
  49. Smircich, M. & J. Kelly, 2014. Extending the 2% rule: the effects of heavy internal tags on stress physiology, swimming performance, and growth in brook trout. Animal Biotelemetry 2: 16.CrossRefGoogle Scholar
  50. Winter, J., 1996. Advances in underwater biotelemetry In Murphy, B. R. & D. W. Willis (eds), Fisheries Techniques. American Fisheries Society, Bethesda, MD: 732.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Igor Emiliano Gomes Pinheiro
    • 1
  • Mônica Mathias Costa Muelbert
    • 1
  • Virgínia Fonseca Pedrosa
    • 1
  • Luis Alberto Romano
    • 1
  • José Henrique Muelbert
    • 1
  1. 1.Instituto de OceanografiaUniversidade Federal do Rio GrandeRio GrandeBrazil

Personalised recommendations