Abstract
Gross primary production and ecosystem respiration together define ecosystem metabolism and help indicate the importance of internal and external carbon sources. Spatial variability of these processes is poorly characterized in rivers. We measured metabolism in the Kansas River: (1) at 10 locations over 100 s of km in tributaries within the watershed and (2) over 20 km with detailed sampling in the main stem. Whole-river metabolism at the larger scale was decoupled from light, algal growth, and nutrient limitation, and was positively related to nutrients. Smaller-scale main stem sampling revealed almost as much variance over a few kilometers as the larger scale sampling. Local processes seemed to dominate dissolved oxygen dynamics, since diurnal dissolved oxygen patterns were better correlated with absolute time than data corrected for travel times. A single-station method compared against two-station metabolism methods indicated that local hotspots of metabolism occur at scales less than 1 km and that single-station estimates average out this variance. The main stem data provide support to the idea that functional processing zones control characteristics used to estimate system metabolism, but the nutrient effect at the whole watershed level indicates that transport from upstream can also be important.
This is a preview of subscription content, access via your institution.






References
Allen, A. P., J. F. Gillooly & J. H. Brown, 2005. Linking the global carbon cycle to individual metabolism. Functional Ecology 19: 202–213.
Ameel, J. J., R. P. Axler & C. J. Owen, 1993. Persulfate digestion for determination of total nitrogen and phosphorus in low-nutrient waters. American Environmental Laboratory 10: 7–11.
Berg, P., D. J. Koopmans, M. Huettel, H. Li, K. Mori & A. Wüest, 2016. A new robust oxygen-temperature sensor for aquatic eddy covariance measurements. Limnology and Oceanography: Methods 14: 151–167.
Bernot, M. J., D. J. Sobota, R. O. Hall, P. J. Mulholland, W. K. Dodds, J. R. Webster, J. L. Tank, L. R. Ashkenas, L. W. Cooper & C. N. Dahm, 2010. Inter-regional comparison of land-use effects on stream metabolism. Freshwater Biology 55: 1874–1890.
Bott, T. L., J. T. Brock, C. S. Dunn, R. J. Naiman, R. W. Ovink & R. C. Peterson, 1985. Benthic community metabolism in four temperate stream systems: an inter-biome comparison and evaluation of the river continuum concept. Hydrobiologia 123: 3–45.
Brett, M. T., S. E. Bunn, S. Chandra, A. W. E. Galloway, F. Guo, M. J. Kainz, P. Kankaala, D. C. P. Lau, T. P. Moulton, M. E. Power, J. B. Rasmussen, S. J. Taipale, J. H. Thorp & J. D. Wehr, 2017. How important are terrestrial organic carbon inputs for secondary production in freshwater ecosystems? Freshwater Biology 62: 833–853.
Buchanan, T. J. & W. P. Somers, 1969. Discharge Measurements at Gaging Stations. US Government Printing Office, Washington.
Carpenter, S. R., 1996. Microcosm experiments have limited relevance for community and ecosystem ecology. Ecology 77: 677–680.
Chapra, S. C. & D. M. Di Toro, 1991. Delta method for estimating primary production, respiration, and reaeration in streams. Journal of Environmental Engineering 117: 640–655.
Demars, B. O. L., J. R. Manson, J. S. Olafsson, G. M. Gislason, R. Gudmundsdottir, G. Woodward, J. Reiss, D. E. Pichler, J. J. Rasmussen & N. Friberg, 2011. Temperature and the metabolic balance of streams. Freshwater Biology 56: 1106–1121.
Demars, B. O. L., J. Thompson & J. R. Manson, 2015. Stream metabolism and the open diel oxygen method: principles, practice, and perspectives. Limnology and Oceanography: Methods 13: 356–374.
Demars, B. O., G. M. Gíslason, J. S. Ólafsson, J. R. Manson, N. Friberg, J. M. Hood, J. J. Thompson & T. E. Freitag, 2016. Impact of warming on CO2 emissions from streams countered by aquatic photosynthesis. Nature Geoscience 9: 758–761.
Dodds, W. K., 2006. Eutrophication and trophic state in rivers and streams. Limnology and Oceanography 51: 671–680.
Dodds, W. K. & M. R. Whiles, 2010. Freshwater Ecology: concepts and Environmental Applications of Limnology, 2nd ed. Academic Press, Burlington.
Dodds, W. K., J. J. Beaulieu, J. J. Eichmiller, J. R. Fischer, N. R. Franssen, D. A. Gudder & R. W. Sheibley, 2008. Journal of Geophysical Research-Biogeosciences 113: G4.
Dodds, W. K., A. M. Veach, C. M. Ruffing, D. M. Larson, J. L. Fischer & K. H. Costigan, 2013. Abiotic controls and temporal variability of river metabolism: multiyear analyses of Mississippi and Chattahoochee River data. Freshwater Science 32: 1073–1087.
Eaton, A. D. & M. A. H. Franson, 2005. Standard Methods for the Examination of Water & Wastewater. American Public Health Association, Washington.
Findlay, S. G., R. L. Sinsabaugh, W. V. Sobczak & M. Hoostal, 2003. Metabolic and structural response of hyporheic microbial communities to variations in supply of dissolved organic matter. Limnology and Oceanography 48: 1608–1617.
Fuß, T., B. Behounek, A. J. Ulseth & G. A. Singer, 2017. Land use controls stream ecosystem metabolism by shifting dissolved organic matter and nutrient regimes. Freshwater Biology 62: 582–599.
Gore, J. A., 2006. Discharge measurements and stream-flow analysis. In Hauer, F. R. & G. A. Lamberti (eds), Methods in Stream Ecology. Academic Press, San Diego: 5–74.
Grace, M. R., D. P. Giling, S. Hladyz, V. Caron, R. M. Thompson & R. Mac Nally, 2015. Fast processing of diel oxygen curves: estimating stream metabolism with BASE (BAyesian Single-station Estimation). Limnology and Oceanography: Methods 13: 103–114.
Hall, R. O. J. & J. L. Tank, 2005. Correcting whole-stream estimates of metabolism for groundwater input. Limnology and Oceanography: Methods 3: 222–229.
Hall, R. O., C. B. Yackulic, T. A. Kennedy, M. D. Yard, E. J. Rosi-Marshall, N. Voichick & K. E. Behn, 2015. Turbidity, light, temperature, and hydropeaking control primary productivity in the Colorado River, Grand Canyon. Limnology and Oceanography 60: 512–526.
Hall, R. O., J. L. Tank, M. A. Baker, E. J. Rosi-Marshall & E. R. Hotchkiss, 2016. Metabolism, gas exchange, and carbon spiraling in rivers. Ecosystems 19: 73–86.
Holtgrieve, G. W., D. E. Schindler, T. A. Branch & Z. T. A’mar, 2010. Simultaneous quantification of aquatic ecosystem metabolism and reaeration using a Bayesian statistical model of oxygen dynamics. Limnology and Oceanography 55: 1047–1062.
Hondzo, M., V. R. Voller, M. Morris, E. Foufoula-Georgiou, J. Finlay, V. Ganti & M. E. Power, 2013. Estimating and scaling stream ecosystem metabolism along channels with heterogeneous substrate. Ecohydrology 6: 679–688.
Hotchkiss, E. R., R. O. Hall, R. A. Sponseller, D. Butman, J. Klaminder, H. Laudon, M. Rosvall & J. Karlsson, 2015. Sources of and processes controlling CO2 emissions change with the size of streams and rivers. Nature Geoscience 8: 696–699.
Houser, J. N., L. A. Bartsch, W. B. Richardson, J. T. Rogala & J. F. Sullivan, 2015. Ecosystem metabolism and nutrient dynamics in the main channel and backwaters of the Upper Mississippi River. Freshwater Biology 60: 1863–1879.
Hunt, R. J., T. D. Jardine, S. K. Hamilton & S. E. Bunn, 2012. Temporal and spatial variation in ecosystem metabolism and food web carbon transfer in a wet-dry tropical river. Freshwater Biology 57: 435–450.
Huryn, A. D., J. P. Benstead & S. M. Parker, 2014. Seasonal changes in light availability modify the temperature dependence of ecosystem metabolism in an arctic stream. Ecology 95: 2826–2839.
Junk, W. J., P. B. Bayley & R. E. Sparks, 1989. The flood pulse concept in river-floodplain systems. Canadian Special Publication of Fisheries and Aquatic Sciences 106: 110–127.
Karr, J. R. & D. R. Dudley, 1981. Ecological perspective on water quality goals. Environmental Management 5: 55–68.
Kupilas, B., D. Hering, A. W. Lorenz, C. Knuth & B. Gücker, 2017. Hydromorphological restoration stimulates river ecosystem metabolism. Biogeosciences 14: 1989–2002.
Marcarelli, A. M., C. V. Baxter, M. M. Mineau & R. O. Hall, 2011. Quantity and quality: unifying food web and ecosystem perspectives on the role of resource subsidies in freshwaters. Ecology 92: 1215–1225.
McCutchan, J. H., W. M. Lewis & J. F. Saunders, 1998. Uncertainty in the estimation of stream metabolism from open-channel oxygen concentrations. Journal of the North American Benthological Society 17: 155–165.
McCutchan Jr., J. H., J. F. Saunders III, W. M. Lewis Jr. & M. G. Hayden, 2002. Effects of groundwater flux on open-channel estimates of stream metabolism. Limnology and Oceanography 47: 321–324.
Metcalf, A. L., 1966. Fishes of the Kansas River system in relation to zoogeography of the Great Plains. University of Kansas Publications, Museum of Natural History 17: 23–189.
Mulholland, P. J., C. S. Fellows, J. L. Tank, N. B. Grimm, J. R. Webster, S. K. Hamilton, E. Marti, L. Ashkenas, W. B. Bowden, W. K. Dodds, W. H. McDowell, M. J. Paul & B. J. Peterson, 2001. Inter-biome comparison of factors controlling stream metabolism. Freshwater Biology 46: 1503–1517.
Ochs, C. A., O. Pongruktham & P. V. Zimba, 2013. Darkness at the break of noon: phytoplankton production in the lower Mississippi River. Limnology and Oceanography 58: 555–568.
Oviatt, C. A., D. T. Rudnick, A. A. Keller, P. A. Sampou & G. T. Almquist, 1986. A comparison of system (O2 and CO2) and C-14 measurements of metabolism in estuarine mesocosms. Marine Ecology Progress Series 28: 57–67.
Quist, M. C., J. S. Tillma, M. N. Burlingame & C. S. Guy, 1999. Overwinter habitat use of shovelnose sturgeon in the Kansas River. Transactions of the American Fisheries Society 128: 522–527.
Reichert, P., U. Uehlinger & V. Acuña, 2009. Estimating stream metabolism from oxygen concentrations: effect of spatial heterogeneity. Journal of Geophysical Research: Biogeosciences. https://doi.org/10.1029/2008JG000917.
Richards, R. P., D. B. Baker, J. P. Crumrine, J. W. Kramer, D. E. Ewing & B. J. Merryfield, 2008. Thirty year trends in suspended sediment in seven Lake Erie tributaries. Journal of Environmental Quality 37: 1894–1908.
Riley, A. J. & W. K. Dodds, 2012. The expansion of woody riparian vegetation, and subsequent stream restoration, influences the metabolism of prairie streams. Freshwater Biology 57: 1138–1150.
Riley, A. J. & W. K. Dodds, 2013. Whole-stream metabolism: strategies for measuring and modeling diel trends of dissolved oxygen. Freshwater Science 32: 56–69.
Sartory, D. P. & J. U. Grobbelaar, 1984. Extraction of chlorophyll a from freshwater phytoplankton for spectrophotometric analysis. Hydrobiologia 114: 177–187.
Schade, J. D., K. MacNeill, S. A. Thomas, F. Camille McNeely, J. R. Welter, J. Hood, M. Goodrich, M. E. Power & J. C. Finlay, 2011. The stoichiometry of nitrogen and phosphorus spiralling in heterotrophic and autotrophic streams. Freshwater Biology 56: 424–436.
Siders, A. C., D. M. Larson, J. Rüegg & W. K. Dodds, 2017. Probing whole stream metabolism: influence of spatial heterogeneity on rate estimates. Freshwater Biology 62: 711–723.
Song, C., W. K. Dodds, M. T. Trentman, J. Rüegg & F. Ballantyne, 2016. Methods of approximation influence aquatic ecosystem metabolism estimates. Limnology and Oceanography: Methods 14: 557–569.
Tank, J. L. & W. K. Dodds, 2003. Nutrient limitation of epilithic and epixylic biofilms in ten North American streams. Freshwater Biology 48: 1031–1049.
Tank, J. L., M. J. Bernot & E. J. Rosi-Marshall, 2006. Nitrogen limitation and uptake. In Lauer, F. R. & G. A. Lamberti (eds), Methods in Stream Ecology. Academic Press, New York: 213–238.
Thorp, J. H. & M. D. Delong, 1994. The riverine productivity model – a heuristic view of carbon-sources and organic-processing in large river ecosystems. Oikos 70: 305–308.
Thorp, J. H. & M. D. Delong, 2002. Dominance of autochthonous autotrophic carbon in food webs of heterotrophic rivers. Oikos 96: 543–550.
Thorp, J. H., M. C. Thoms & M. D. Delong, 2006. The riverine ecosystem synthesis: biocomplexity in river networks across space and time. River Research and Applications 22: 123–147.
Tromboni, F., W. K. Dodds, V. Neres-Lima, E. Zandronà & T. P. Moulton, 2017. Heterogeneity and scaling of photosynthesis, respiration, and nitrogen uptake in three Atlantic Rainforest Streams. Ecosphere 8: 9.
Vannote, R. L., G. W. Minshall, K. W. Cummins, J. R. Sedell & C. E. Cushing, 1980. The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences 37: 130–137.
Ward, J. & J. Stanford, 1995. The serial discontinuity concept: extending the model to floodplain rivers. Regulated Rivers: Research & Management 10: 159–168.
Wetzel, R. G., 2001. Limnology: Lake and River Ecosystems, 3rd ed. Academic Press, San Diego.
Wiegner, T. N., L. A. Kaplan, J. D. Newbold & P. H. Ostrom, 2005. Contribution of dissolved organic C to stream metabolism: a mesocosm study using 13C-enriched tree-tissue leachate. Journal of the North American Benthological Society 24: 48–67.
Williams, R. J., C. White, M. L. Harrow & C. Neal, 2000. Temporal and small-scale spatial variations of dissolved oxygen in the Rivers Thames, Pang and Kennet, UK. Science of the Total Environment 251: 497–510.
Acknowledgements
We thank B. Demars and an anonymous reviewer for numerous improvements to the manuscript. We thank National Science Foundation Macrosystems 1258994 and 1442544 for funding. Robert Mapes and Richard Lehrter provided assistance and Martha Mather and the Kansas Cooperative Fisheries and Wildlife program graciously provided some field equipment. This is publication 18-281-J from the Kansas Agricultural Experiment Station.
Author information
Authors and Affiliations
Corresponding author
Additional information
Handling editor: John M. Melack
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Dodds, W.K., Higgs, S.A., Spangler, M.J. et al. Spatial heterogeneity and controls of ecosystem metabolism in a Great Plains river network. Hydrobiologia 813, 85–102 (2018). https://doi.org/10.1007/s10750-018-3516-0
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10750-018-3516-0
Keywords
- Scaling
- Respiration
- Gross primary production
- Aeration
- Nutrients
- Light