Skip to main content
Log in

Mixotrophic phytoplankton dynamics in a shallow Mediterranean water body: how to make a virtue out of necessity

  • PHYTOPLANKTON & BIOTIC INTERACTIONS
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Mixotrophy is a combination of photosynthesis and direct access to organic carbon sources, mainly through osmotrophy or phagotrophy. This strategy is adopted by several, phylogenetically distinct, phytoplankton groups and is commonly occurring in marine, brackish and freshwater ecosystems. Traditionally, it has been put in relation to both scarcity of inorganic nutrients and poor light conditions. However, we observed blooms of the mixotrophic, toxic haptophyte Prymnesium parvum in different periods of the year and under variable resources availability. The analysis of a 6.5-year data set of phytoplankton weekly records from a Sicilian shallow lake (Biviere di Gela, south-eastern Sicily) allowed us to hypothesise that a depleted condition as regards inorganic nutrients is not the main fuel to the growth of P. parvum, neither this is due to light limitation. The results achieved show that an increased availability in suitable preys can stimulate the growth of this phagotrophic photoautotroph. Contemporarily, it was not found any clear environmental patterns to explain species dominance and growth patterns as related to inorganic nutrient availability. Moreover, it is shown that these organisms tend to monopolise resources when these become available irrespective of seasons, and under variable conditions as regards inorganic nutrient availability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • APAT, 2003. Metodi Analitici per le Acque. Manuali e Linee Guida 29/2003. Agenzia per la Protezione dell’Ambiente e per i Servizi Tecnici, Roma. ISBN 88-448-0083-7 [available on internet at http://www.isprambiente.gov.it/it/pubblicazioni/manuali-e-linee-guida/metodi-analitici-per-le-acque].

  • Arenovski, A. L., E. L. Lim & D. A. Caron, 1995. Mixotrophic nanoplankton in oligotrophic surface waters of the Sargasso Sea may employ phagotrophy to obtain major nutrients. Journal of Plankton Research 17: 801–820.

    Article  Google Scholar 

  • Azam, F., T. Fenchel, J. G. Field, J. S. Gray, L. A. Meyer-Reil & F. Thingstad, 1983. The ecological role of water-column microbes in the sea. Marine Ecology Progress Series 10: 257–263.

    Article  Google Scholar 

  • Barone, R. & L. Naselli-Flores, 2003. Distribution and seasonal dynamics of Cryptomonads in Sicilian water bodies. Hydrobiologia 502: 325–329.

    Article  Google Scholar 

  • Barone, R., G. Castelli & L. Naselli-Flores, 2010. Red sky at night cyanobacteria delight: the role of climate in structuring phytoplankton assemblage in a shallow, Mediterranean lake (Biviere di Gela, southeastern Sicily). Hydrobiologia 639: 43–53.

    Article  CAS  Google Scholar 

  • Burkholder, J. M., P. M. Glibert & H. M. Skelton, 2008. Mixotrophy, a major mode of nutrition for harmful algal species in eutrophic waters. Harmful Algae 8: 77–93.

    Article  CAS  Google Scholar 

  • Caron, D. A., R. W. Sanders, E. L. Lim, C. Marrasé, L. A. Amaral, S. Whitney, R. B. Aoki & K. G. Porter, 1993. Light-dependent phagotrophy in the freshwater mixotrophic crysophyte Dinobryon cilindricum. Microbial Ecology 25: 93–111.

    Article  CAS  Google Scholar 

  • Croft, M. T., M. J. Warren & A. G. Smith, 2006. Algae need their vitamins. Eukaryotic Cell 5: 1175–1183.

    Article  CAS  Google Scholar 

  • Eikrem, W., L. K. Medlin, J. Henderiks, S. Rokitta, B. Rost, I. Probert, J. Throndsen & B. Edvardsen, 2017. Haptophyta. In Archibald, J. M., A. G. B. Simpson & C. H. Slamovits (eds), Handbook of the Protists, 2nd ed. Springer, Cham: 893–953.

    Chapter  Google Scholar 

  • Eiler, A., 2006. Evidence for the ubiquity of mixotrophic bacteria in the upper ocean: implications and consequences. Applied and Environmental Microbiology 72: 7431–7437.

    Article  CAS  Google Scholar 

  • Ghyoot, C., K. J. Flynn, A. Mitra, C. Lancelot & N. Gypens, 2017. Modeling plankton mixotrophy: a mechanistic model consistent with the Shuter-type biochemical approach. Frontiers in Ecology and Evolution. https://doi.org/10.3389/fevo.2017.00078.

    Article  Google Scholar 

  • Granéli, E. & N. Johansson, 2003. Increase in the production of allelopathic substances by Prymnesium parvum cells grown under N- or P-deficient conditions. Harmful Algae 2: 135–145.

    Article  Google Scholar 

  • Händeler, K., Y. P. Grzymbowski, P. J. Krug & H. Wägele, 2009. Functional chloroplasts in metazoan cells – a unique evolutionary strategy in animal life. Frontiers in Zoology. https://doi.org/10.1186/1742-9994-6-28.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hillebrand, H., C.-D. Dûrselen, D. Kirschtel, U. Pollingher & T. Zohary, 1999. Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology 35: 403–424.

    Article  Google Scholar 

  • Hoef-Hemden, K. & J. M. Archibald, 2017. Cryptophyta (Cryptomonads). In Archibald, J. M., A. G. B. Simpson & C. H. Slamovits (eds), Handbook of the Protists, 2nd ed. Springer, Cham: 851–891.

    Chapter  Google Scholar 

  • Jeppesen, E., S. Brucet, L. Naselli-Flores, E. Papastergiadou, K. Stefanidis, T. Nõges, P. Nõges, J. L. Attayde, T. Zohary, J. Coppens, T. Bucak, R. F. Menezes, F. R. S. Freitas, M. Kernan, M. Søndergaard & M. Beklioğlu, 2015. Ecological impacts of global warming and water abstraction on lakes and reservoirs due to changes in water level and related changes in salinity. Hydrobiologia 750: 201–227.

    Article  Google Scholar 

  • Johnson, M. D., D. J. Beaudoin, A. Laza-Martinez, S. T. Dyhrman, E. Fensin, S. Lin, A. Merculief, S. Nagai, M. Pompeu, O. Setälä & D. K. Stoecker, 2016. The genetic diversity of Mesodinium and associated cryptophytes. Frontiers in Microbiology. https://doi.org/10.3389/fmicb.2016.02017.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jones, H. J. L., 1997. A classification of mixotrophic protists based on their behaviour. Freshwater Biology 37: 35–43.

    Article  Google Scholar 

  • Jones, R. I., 2000. Mixotrophy in planktonic protists: an overview. Freshwater Biology 45: 219–226.

    Article  Google Scholar 

  • Jones, H., C. S. Cockell, C. Goodson, N. Price, A. Simpson & B. Thomas, 2009. Experiments on mixotrophic protists and catastrophic darkness. Astrobiology 9: 563–571.

    Article  CAS  Google Scholar 

  • Kagalou, I., G. Tsimarakis & E. Bezirtzoglou, 2002. Inter-relationships between bacteriological and chemical variations in Lake Pamvotis – Greece. Microbial Ecology in Health and Disease 14: 37–41.

    Article  Google Scholar 

  • Keeling, P. J., 2013. The number, speed, and impact of plastid endosymbioses in eukaryotic evolution. Annual Review of Plant Biology 64: 583–607.

    Article  CAS  Google Scholar 

  • Leander, B. S., G. Lax, A. Karnkowska & A. G. B. Simpson, 2017. Euglenida. In Archibald, J. M., A. G. B. Simpson & C. H. Slamovits (eds), Handbook of the Protists, 2nd ed. Springer, Cham: 1047–1088.

    Chapter  Google Scholar 

  • Litchman, E. & C. A. Klausmeier, 2008. Trait-based community ecology of phytoplankton. Annual Review of Ecology, Evolution, and Systematics 39: 615–639.

    Article  Google Scholar 

  • Mitra, A., K. J. Flynn, U. Tillmann, J. A. Raven, D. Caron, D. K. Stoecker, F. Not, P. J. Hansen, G. Hallegraeff, R. Sanders, S. Wilken, G. McManus, M. Johnson, P. Pitta, S. Våge, T. Berge, A. Calbet, F. Thingstad, H. J. Jeong, J.-A. Burkholder, P. M. Glibert, E. Granéli & V. Lundgren, 2016. Defining planktonic protist functional groups on mechanisms for energy and nutrient acquisition: incorporation of diverse mixotrophic strategies. Protists 167: 106–120.

    Article  CAS  Google Scholar 

  • Naselli-Flores, L., 1999. Limnological aspects of Sicilian reservoirs: a comparative ecosystemic approach. In Tundisi, J. G. & M. Straškraba (eds), Theoretical Reservoir Ecology and its Applications. Backhuys Publishers, Leiden: 283–311.

    Google Scholar 

  • Naselli-Flores, L., 2000. Phytoplankton assemblages in twenty-one Sicilian reservoirs: relationships between species composition and environmental factors. Hydrobiologia 424: 1–11.

    Article  CAS  Google Scholar 

  • Naselli-Flores, L., 2014. Morphological analysis of phytoplankton as a tool to assess ecological state of aquatic ecosystems: the case of Lake Arancio, Sicily, Italy. Inland Waters 4: 15–26.

    Article  Google Scholar 

  • Naselli-Flores, L. & R. Barone, 1994. Relationship between trophic state and plankton community structure in 21 Sicilian dam reservoirs. Hydrobiologia 275(276): 197–205.

    Article  Google Scholar 

  • Naselli-Flores, L. & R. Barone, 2011. Fight on plankton! Or, phytoplankton shape and size as adaptive tools to get ahead in the struggle for life. Cryptogamie Algologie 32: 157–204.

    Article  Google Scholar 

  • Naselli-Flores, L. & R. Barone, 2012. Phytoplankton dynamics in permanent and temporary Mediterranean waters: is the game hard to play because of hydrological disturbance? Hydrobiologia 698: 147–159.

    Article  CAS  Google Scholar 

  • Naselli-Flores, L., R. Termine & R. Barone, 2016. Phytoplankton colonization patterns. Is species richness depending on distance among freshwaters or on their connectivity? Hydrobiologia 764: 103–113.

    Article  CAS  Google Scholar 

  • Obrador, B. & J. L. Pretus, 2008. Light regime and components of turbidity in a Mediterranean coastal lagoon. Estuarine, Coastal and Shelf Science 77: 123–133.

    Article  Google Scholar 

  • Olutiola, P. O., K. O. Awojobi, O. Oyedeji, A. D. V. Ayansina & O. O. Cole, 2010. Relationship between bacterial density and chemical composition of a tropical sewage oxidation pond. African Journal of Environmental Science and Technology 4: 595–602.

    CAS  Google Scholar 

  • Pållson, C. & W. Granéli, 2004. Nutrient limitation of autotrophic and mixotrophic phytoplankton in a temperate and tropical humic lake gradient. Journal of Plankton Research 26: 1005–1014.

    Article  Google Scholar 

  • Raven, J. A., 1997. Phagotrophy in phototrophs. Limnology and Oceanography 42: 198–205.

    Article  CAS  Google Scholar 

  • Rengefors, K., A. Kremp, T. B. H. Reusch & M. Wood, 2017. Genetic diversity and evolution in eukaryotic phytoplankton: revelations from population genetic studies. Journal of Plankton Research 39: 165–179.

    Google Scholar 

  • Reynolds, C. S., 2006. The Ecology of Phytoplankton. Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Reynolds, C. S., V. L. Huszar, C. Kruk, L. Naselli-Flores & S. Melo, 2002. Towards a functional classification of the freshwater phytoplankton. Journal of Plankton Research 24: 417–428.

    Article  Google Scholar 

  • Roelke, D. L., A. Barkoh, B. W. Brooks, J. P. Grover, K. D. Hambright, J. W. LaClaire II, P. D. R. Moeller & R. Patino, 2016. A chronicle of a killer alga in the west: ecology, assessment, and management of Prymnesium parvum blooms. Hydrobiologia 764: 29–50.

    Article  CAS  Google Scholar 

  • Saldarriaga, J. F. & F. J. R. M. Taylor, 2017. Dinoflagellata. In Archibald, J. M., A. G. B. Simpson & C. H. Slamovits (eds), Handbook of the Protists, 2nd ed. Springer, Cham: 625–678.

    Chapter  Google Scholar 

  • Simpson, A. G. B., C. H. Slamovits & J. M. Archibald, 2017. Protist diversity and eukaryote phylogeny. In Archibald, J. M., A. G. B. Simpson & C. H. Slamovits (eds), Handbook of the Protists, 2nd ed. Springer, Cham: 1–21.

    Google Scholar 

  • Stoecker, D. K., 1998. Conceptual models of mixotrophy in planktonic protists and some ecological and evolutionary implications. European Journal of Protistology 34: 281–290.

    Article  Google Scholar 

  • Tanifuji, G. & N. T. Onodera, 2017. Cryptomonads: a model organism sheds light on the evolutionary history of genome reorganization in secondary endosymbiosis. Advances in Botanical Research 84: 263–320.

    Article  Google Scholar 

  • Tartari, G. A. & R. Mosello, 1997. Metodologie analitiche e controlli di qualità nel laboratorio chimico dell’Istituto Italiano di Idrobiologia. Documenta dell’Istituto Italiano di Idrobiologia 60: 1–160.

    Google Scholar 

  • Tranvik, L. J., K. G. Porter & J. M. Sieburth, 1989. Occurrence of bacterivory in Cryptomonas, a common fresh-water phytoplankter. Oecologia 78: 473–476.

    Article  Google Scholar 

  • Yafremava, L., M. Wielgos, S. Thomas, A. Nasir, M. Wang, J. E. Mitthenthal & G. Caetano-Anollés, 2013. A general framework of persistence strategies for biological systems helps explain domains of life. Frontiers in Genetics. https://doi.org/10.3389/fgene.2013.00016.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zimmer, C., 2009. On the origin of eukaryotes. Science 325: 666–668.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luigi Naselli-Flores.

Additional information

Guest editors: Hugo Sarmento, Irina Izaguirre, Vanessa Becker & Vera L. M. Huszar / Phytoplankton and its Biotic Interactions

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 88 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naselli-Flores, L., Barone, R. Mixotrophic phytoplankton dynamics in a shallow Mediterranean water body: how to make a virtue out of necessity. Hydrobiologia 831, 33–41 (2019). https://doi.org/10.1007/s10750-018-3507-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-018-3507-1

Keywords

Navigation