Advertisement

Hydrobiologia

, Volume 809, Issue 1, pp 323–337 | Cite as

Phenology of three coexisting annual fish species: seasonal patterns in hatching dates

  • Daniel García
  • Marcelo Loureiro
  • Emanuel Machín
  • Martin Reichard
Primary Research Paper

Abstract

Annual fish are specialized freshwater fishes that are adapted to live in seasonal freshwater pools. Their life cycle is tightly adapted to seasonally predictable aquatic and desiccated phases in their habitat. We used daily increments in otoliths to test the hypothesis of the direct association between seasonal rains and hatching dates of three coexisting Austrolebias species across 14 temporary pools in the Uruguayan pampa. Hatching was relatively synchronous within and between species across a small but topographically diverse region. Hatching occurred over 1 month in midautumn and peaked between 15 and 20 April 2015. The prediction of earlier hatching of a large predatory annual fish species was not confirmed. Unexpectedly, an unusual desiccation event in the middle of the winter growing season (May–July) affected many pools. Some pools re-filled after extensive precipitation in August, followed by the hatching of a new cohort in some (but not all) of those pools. The first cohort survived throughout the year (until late spring) in the pools that did not desiccate. Our study demonstrates how annual fish can cope with unexpected seasonal rainfall patterns that may be a consequence of current climate change.

Keywords

Birth date Climate change Intraguild predation Killifish Hatching synchrony Otoliths 

Notes

Acknowledgements

We thank “Estancia Curupí” and “Café del Río” for help in precipitation data and all local land owners who allowed us to work on their properties. We thank Patricia Magariños, Diego Díaz, Esteban Ortiz, Matej Polačik, Radim Blažek and Milan Vrtílek for the help in the field. All local authorities of Villa Soriano generously contributed for the fulfilment of the project. Financial support came from the Agencia Nacional de Investigación e Innovación (ANII, FCE_2013_100380) project to DG and the Comisión Sectorial de Investigación Científica (CSIC I + D 2014_7) project to ML. DG received a PhD scholarship from the Agencia Nacional de Investigación e Innovación (ANII, POS_NAC_2014_102280). ML belongs to the Sistema Nacional de Investigadores of Uruguay. MR was supported by the Czech Science Foundation (P505/12/G112). We followed all legal and ethical guidelines according to local requirement. The research was approved under the reference: # 240011-001885-13.

References

  1. Arenzon, A., A. C. Peret & M. B. C. Bohrer, 1999. Reproduction of the annual fish Cynopoecilus maelanotaenia (Regan 1912) based on a temporary water body population in Rio Grande do Sul State, Brazil. Hydrobiologia 411: 65–70.CrossRefGoogle Scholar
  2. Arenzon, A., A. C. Peret & M. B. C. Bohrer, 2001. Growth of the annual fish Cynopoecilus melanotaenia (Regan, 1912) based in a temporary water body population in Rio Grande do Sul State, Brazil (Cyprinodontiformes, Rivulidae). Revista Brasileira de Biologia 61: 117–123.CrossRefGoogle Scholar
  3. Arezo, M. J., L. Pereiro & N. Berois, 2005. Early development in the annual fish Cynolebias viarius. Journal of Fish Biology 66: 1357–1370.CrossRefGoogle Scholar
  4. Batallés, M., V. Cantón, G. Caldevilla & J. Cravino, 2009. Caracterización ecosistémica de Villa Soriano y de la cuenca baja del Río Negro. MVOTMA – MGAP. Montevideo, Uruguay: 25 pp.Google Scholar
  5. Bates, D., M. Maechler, B. Bolker & S. Walker, 2014. lme4: Linear mixed-effects models using Eigen and S4. R Package Version 1: 1–23.Google Scholar
  6. Berois, N., M. J. Arezo, N. G. Papa & G. A. Clivio, 2012. Annual fish: developmental adaptations for an extreme environment. Wiley Interdisciplinary Reviews: Developmental Biology 1: 595–602.CrossRefPubMedGoogle Scholar
  7. Berois, N., M. J. Arezo & R. O. de Sá, 2014. The neotropical genus Austrolebias: an emerging model of annual killifishes. Cell and Developmental Biology 3: 136.Google Scholar
  8. Bellard, C., C. Bertelsmeier, P. Leadley, W. Thuiller & F. Courchamp, 2012. Impacts of climate change on the future of biodiversity. Ecology Letters 15: 365–377.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Blažek, R., M. Polačik & M. Reichard, 2013. Rapid growth, early maturation and short generation time in African annual fishes. EvoDevo 4: 24.  https://doi.org/10.1186/2041-9139-4-24.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Brazeiro, A., I. Berro, C. Toranza & C. Faccio, 2014. Towards the conservation of the Villa Soriano Wetlands: lessons learned from a participative process. In Fernández, L., A. Vanina & M. de Salgot Marçay (eds), Evaluación ambiental integral de ecosistemas degradados de Iberoamérica: experiencias positivas y buenas prácticas. CYTED, Barcelona: 257–277.Google Scholar
  11. Brendock, L. & L. De Meester, 2003. Egg banks in freshwater zooplankton: evolutionary and ecological archives in the sediment. Hydrobiologia 491: 65–84.CrossRefGoogle Scholar
  12. Brock, M. A., 1998. Are temporary wetlands resilient? Evidence from seed banks of Australian and South African wetlands. In McComb, A. J. & J. A. Davis (eds), Wetlands for the future. Gleneagles Press, Adelaide: 193–206.Google Scholar
  13. Brock, M. A., D. L. Nielsen, R. J. Shiel, J. D. Green & J. D. Langley, 2003. Drought and aquatic community resilience: the role of eggs and seeds in sediments of temporary wetlands. Freshwater Biology 48: 1207–1218.CrossRefGoogle Scholar
  14. Brothers, E. B., C. P. Mathews & R. Lasker, 1975. Daily growth increments in otoliths from larval and adult fishes. Fishery Bulletin 74: 1–8.Google Scholar
  15. Burton, M. N., 1990. Trends in the life-history styles of vertebrates: an introduction to the second ALHS volume. Environmental Biology of Fishes 28: 7–16.CrossRefGoogle Scholar
  16. Campana, S. E. & J. D. Nielson, 1982. Daily growth increments in otoliths of Starry Flounder (Platichthys stellatus) and the influence of some environmental variables in their production. Canadian Journal of Fisheries and Aquatic Sciences 39: 937–942.CrossRefGoogle Scholar
  17. Carmeño, P., A. Uriarte, A. M. de Murguía & B. Morales-Nin, 2003. Validation of daily increment formation in otoliths of juvenile and adult European anchovy. Journal of Fish Biology 62: 679–691.CrossRefGoogle Scholar
  18. Cleland, E. E., I. Chuine, A. Menzel, H. A. Mooney & M. D. Schwartz, 2007. Shifting plant phenology in response to global change. Trends in Ecology and Evolution 22: 357–365.  https://doi.org/10.1016/j.tree.2007.04.003.CrossRefPubMedGoogle Scholar
  19. Costa, W. J., 2009. Trophic radiation in the South American annual killifish genus Austrolebias (Cyprinodontiformes: Rivulidae). Ichthyological Exploration of Freshwaters 20: 179–191.Google Scholar
  20. D’Anatro, A. & M. Loureiro, 2005. Geographic variation in Austrolebias luteoflamulatus Vaz-Ferreira, Sierra & Scaglia (Cyprinodontiformes, Rivulidae. Journal of Fish Biology 67: 849–865.CrossRefGoogle Scholar
  21. Edwards, M. & A. J. Richardson, 2004. Impact of climatic change on marine pelagic phenology and trophic mismatch. Nature 430: 881–884.CrossRefPubMedGoogle Scholar
  22. Fablet, R., L. Pecquerie, H. de Puntual, H. Høie, R. Millner, H. Mosegaard & S. A. L. M. Kooijman, 2011. Shedding light on fish otolith biomineralization using a bioenergetic approach. PLoS ONE.  https://doi.org/10.1371/journal.pone.0027055.Google Scholar
  23. Findlay, C. S. & F. Cooke, 1982. Synchrony in the lesser snow goose (Anser caerlescens caerulescens). II. The adaptive value of reproductive synchrony. Evolution 36: 786–799.PubMedGoogle Scholar
  24. Flint, P. L., M. S. Lindberg, M. C. Maccuskie & J. S. Sedinger, 1994. The adaptive significance of hatching synchrony of waterfowl eggs. Wildfowl 45: 248–254.Google Scholar
  25. Furness, A. I., D. N. Reznick, M. S. Springer & R. W. Meredith, 2015. Convergent evolution of alternative developmental trajectories associated with diapause in African and South American killifish. Proceedings of the Royal Society of London B 282: 20142189.CrossRefGoogle Scholar
  26. García, G., A. I. Lalanne, G. Aguirre & M. Cappetta, 2001. Chromosome evolution in the annual killifish genus Cynolebias and mitochondrial phylogenetic analysis. Chromosome Research 9: 437–448.CrossRefPubMedGoogle Scholar
  27. Hillström, L. & K. Olsson, 1994. Advantages of hatching synchrony in the Pied Flycatcher Ficedula hypoleuca. Journal of Avian Biology 25: 205–214.CrossRefGoogle Scholar
  28. Hopper, K. R., P. H. Crowley & D. Kielman, 1996. Density dependence, hatching synchrony, and within-cohort cannibalism in young dragonfly larvae. Ecology 77: 191–200.CrossRefGoogle Scholar
  29. Howe, H. F., 1976. Egg size, hatching asynchrony, sex, and brood reduction in the common gracke. Ecology 57: 1195–1207.CrossRefGoogle Scholar
  30. Huss, M., T. van Kooten & L. Persson, 2010. Intra-cohort cannibalism and size bimodality: a balance between hatching synchrony and resource feedbacks. Oikos 119: 2000–2011.CrossRefGoogle Scholar
  31. Inglima, K., A. Perlmutter & J. Markofsky, 1981. Reversible stage-specific embryonic inhibition mediated by the presence of adults in the annual fish Nothobranchius guentheri. The Journal of Experimental Zoology 215: 23–33.CrossRefPubMedGoogle Scholar
  32. Lanés, L. E. K., F. W. Keppeler & L. Maltchik, 2014. Abundance variations and life history traits of two sympatric species of Neotropical annual fish (Cyprinodontiformes: Rivulidae) in temporary ponds of southern Brazil. Journal of Natural History 48: 1971–1988.CrossRefGoogle Scholar
  33. Lanés, L. E. K., R. S. Godoy, L. Maltchik, M. Polačik, R. Blažek, M. Vrtílek & M. Reichard, 2016. Seasonal dynamics in community structure, abundance, body size and sex ratio in two species of Neotropical annual fishes. Journal of Fish Biology.  https://doi.org/10.1111/jfb.13122.PubMedGoogle Scholar
  34. Liu, R. K. & R. L. Walford, 1966. Increased growth and life-span with lowered ambient temperature in the annual fish, Cynolebias adloffi. Nature 212: 1277–1278.CrossRefGoogle Scholar
  35. Loureiro, M. & R. De Sá, 2016. Diversity of Aplocheiloidei. In Berois, N., G. García & R. De Sá (eds), Annual fishes: life history strategy, diversity, and evolution. CRC Press, Boca Ratón: 3–31.Google Scholar
  36. Manhard, C. V., J. E. Joyce & A. J. Gharrett, 2017. Evolution of phenology in a salmonid population: a potential adaptive response to climate change. Canadian Journal of Fisheries and Aquatic Science.  https://doi.org/10.1139/cjfas-2017-0028.Google Scholar
  37. Nico, L. G. & J. E. Thomerson, 1989. Ecology, food habits and spatial interactions of Orinoco basin annual killifish. Acta Biologica Venezuelica 12: 106–120.Google Scholar
  38. Passos, C., F. Reyes, B. Tassino, G. G. Rosenthal & A. González, 2013. Female annual killifish Austrolebias reicherti (Cyprinodontiformes, Rivulidae) attend to male chemical cues. Ethology 119: 891–897.CrossRefGoogle Scholar
  39. Podrabsky, J. E., T. Hrbek & S. C. Hand, 1998. Physical and chemical characteristics of ephemeral pond habitats in the Maracaibo basin and Llanos region of Venezuela. Hydrobiologia 362: 67–78.CrossRefGoogle Scholar
  40. Podrabsky, J. E., J. F. Carpenter & S. C. Hand, 2001. Survival of water stress in annual fish embryos: dehydration avoidance and egg envelope amyloid fibers. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 280: R123–R131.CrossRefPubMedGoogle Scholar
  41. Podrabsky, J. E., A. L. Romney & K. M. Culpepper, 2016. Alternative developmental pathways. In Berois, N., G. García & R. De Sá (eds), Annual fishes: life history strategy, diversity, and evolution. CRC Press, Boca Ratón: 63–73.Google Scholar
  42. Podrabsky, J. E., C. L. Riggs, A. L. Romney, S. C. Woll, J. T. Wagner, K. M. Culpepper & T. G. Cleaver, 2017. Embryonic development of the annual killifish Austrofundulus limnaeus: an emerging model for ecological and evolutionary developmental biology research and instruction. Developmental Dynamics 246: 779–801.CrossRefPubMedGoogle Scholar
  43. Polačik, M. & M. Janáč, 2017. Costly defense in a fluctuating environment-sensitivity of annual Nothobranchius fishes to predator kairomones. Ecology and Evolution 7: 4289–4298.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Polačik, M. & J. E. Podrabsky, 2015. Temporary environments. In Riesch, R., M. Tobler & M. Plath (eds), Extremophile fishes. Springer, New York: 217–245.Google Scholar
  45. Polačik, M., M. T. Donner & M. Reichard, 2011. Age structure of annual Nothobranchius fishes in Mozambique: is there a hatching synchrony? Journal of Fish Biology 78: 796–809.CrossRefPubMedGoogle Scholar
  46. Polačik, M., R. Blažek, R. Řežucha, M. Vrtílek, E. Terzibasi Tozzini & M. Reichard, 2014. Alternative intrapopulation life-history strategies and their trade-offs in an African annual fish. Journal of Evolutionary Biology 27: 854–865.CrossRefPubMedGoogle Scholar
  47. Polačik, M., C. Smith & M. Reichard, 2017. Maternal source of variability in the embryo development of an annual killifish. Journal of Evolutionary Biology 30: 738–749.CrossRefPubMedGoogle Scholar
  48. Reichard, M., 2016. The evolutionary ecology of African annual fishes. In Berois, N., G. García & R. de Sá (eds), Annual fishes: life history strategy, diversity, and evolution. CRC Press, Boca Ratón: 133–158.Google Scholar
  49. Reichard, M., M. Polačik & O. Sedláček, 2009. Distribution, colour polymorphism and habitat use of the African killifish, Nothobranchius furzeri, the vertebrate with the shortest lifespan. Journal of Fish Biology 74: 198–212.CrossRefPubMedGoogle Scholar
  50. Reichard, M., R. Blažek, M. Polačik & M. Vrtílek, 2017. Hatching date variability in wild populations of four coexisting species of African annual fishes. Developmental Dynamics 246: 827–837.CrossRefPubMedGoogle Scholar
  51. Saigusa, M., 2000. Hatching of an estuarine crab, Sesarma haematocheir: factors affecting the timing of hatching in detached embryos, and enhancement of hatching synchrony by female. Journal of Oceanography 56: 93–102.CrossRefGoogle Scholar
  52. Schneider, D. W. & T. M. Frost, 1996. Habitat duration and community structure in temporary ponds. Journal of the North American Benthological Society 15: 64–86.CrossRefGoogle Scholar
  53. Shalk, C. M., C. G. Montaña & M. E. Libson, 2014. Reproductive strategies of two Neotropical killifish, Austrolebias vandenbergi and Neofundulus ornatipinnis (Cyprinodontiformes: Rivulidae) in the Bolivian Gran Chaco. International Journal of Tropical Biology 62: 109–117.CrossRefGoogle Scholar
  54. Sogard, S. M., 1991. Interpretation of otolith microstructure in juvenile winter flounder (Pseudopleuronectes americanus): ontogenetic development, daily increment validation, and somatic growth relationships. Canadian Journal of Fisheries and Aquatic Science 48: 1862–1871.CrossRefGoogle Scholar
  55. Teixeira de Mello, F., I. González-Bergonzoni & M. Loureiro, 2011. Peces de agua dulce de Uruguay. PPR-MGAP. 188 ppGoogle Scholar
  56. Trenberth, K. E., 2011. Changes in precipitation with climate change. Climate Research 47: 123–138.CrossRefGoogle Scholar
  57. Vaz Ferreira, R., B. Sierra de Soriano & J. Soriano Señorales, 1966. Integración de la fauna de vertebrados en algunas masas de agua dulce temporales de Uruguay. Compilación de Trabajos del Departamento de Zoología Vertebrados, Facultad de Humanidades y Ciencias 25: 1–23.Google Scholar
  58. Visser, M. E. & C. Both, 2005. Shifts in phenology due to global climate change: the need for a yardstick. Proceedings of the Royal Society B 272: 2561–2569.CrossRefPubMedPubMedCentralGoogle Scholar
  59. Volcan, M. V., L. A. Sampaio, D. C. Bongalhardo & R. B. Robaldo, 2012. Reproduction of the annual fish Austrolebias nigrofasciatus (Rivulidae) maintained at different temperatures. Journal of Applied Ichthyology 2012: 1–5.Google Scholar
  60. Vrtílek, M. & M. Reichard, 2016. Patterns of morphological variation among populations of the widespread annual killifish Nothobranchius orthonotus are independent of genetic divergence and biogeography. Journal of Zoological Systematics and Evolutionary Research 54: 289–298.CrossRefGoogle Scholar
  61. Walford, R. L. & R. K. Liu, 1965. Husbandry, life span, and growth rate of the annual fish, Cynolebias adloffi E. Ahl. Experimental Gerontology 1: 161–171.CrossRefGoogle Scholar
  62. Watters, B. R., 2009. The ecology and distribution of Nothobranchius fishes. Journal of the American Killifish Association 42: 37–76.Google Scholar
  63. Williams, D. D., 1997. Temporary ponds and their invertebrate communities. Aquatic Conservation: Marine and Freshwater Ecosystems 7: 105–117.CrossRefGoogle Scholar
  64. Williams, D. D., 2006. The biology of temporary waters. Oxford University Press, Oxford.Google Scholar
  65. Winter, T. C., 1999. Relation of streams, lakes, and wetlands to groundwater flow systems. Hydrogeology Journal 7: 28–45.CrossRefGoogle Scholar
  66. Wourms, J. P., 1972a. The developmental biology of annual fishes I. Stages in the normal development of Austrofundulus myersi Dahl. Journal of Experimental Zoology 182: 143–168.CrossRefPubMedGoogle Scholar
  67. Wourms, J. P., 1972b. The developmental biology of annual fishes. II. Naturally occurring dispersion and reaggregation of blastomeres during the development of annual fish eggs. Journal of Experimental Zoology 182: 169–200.CrossRefPubMedGoogle Scholar
  68. Wourms, J. P., 1972c. The developmental biology of annual fishes. III. Pre-embryonic and embryonic diapause of variable duration in the eggs of annual fishes. Journal of Experimental Zoology 182: 389–414.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Departamento de Ecología y Evolución, Facultad de Ciencias, Instituto de BiologíaUniversidad de la RepúblicaMontevideoUruguay
  2. 2.Institute of Vertebrate BiologyCzech Academy of SciencesBrnoCzech Republic

Personalised recommendations