, Volume 809, Issue 1, pp 309–321 | Cite as

Species validation and cryptic diversity in the Geophagus brasiliensis Quoy & Gaimard, 1824 complex (Teleostei, Cichlidae) from Brazilian coastal basins as revealed by DNA analyses

  • Cássio Ribeiro Souza
  • Paulo Roberto Antunes de Mello AffonsoEmail author
  • Jamille de Araújo Bitencourt
  • Iracilda Sampaio
  • Paulo Luiz Souza Carneiro
Primary Research Paper


Many allopatric populations of the pearl cichlid Geophagus brasiliensis show remarkable morphological, chromosomal, and DNA sequence divergence. As a result, Geophagus brasiliensis is regarded as a species complex, combining recent descriptions of new species and several uncertainties about their actual richness. In the present work, we evaluated the number of evolutionary units in this fish complex along hydrographic basins in northeastern Brazil by using the DNA barcode, species delimitation algorithms and phylogenetic analyses. A total of 14 molecular operational taxonomic units (MOTUS) were identified with high support values and mean differentiation within and among groups of 0.4 and 12.7%, respectively. The DNA sequences supported Geophagus itapicuruensis as a valid taxon, besides indicating likely undescribed species. Moreover, the evolutionary units in coastal basins of useful to infer the evolutionary units in a cryptic and widespread fish group from the Neotropical region. Finally, the undescribed taxa in coastal basins of northeastern Brazil were clearly differentiated from Geophagus brasiliensis sensu stricto. The present data highlight the importance of conserving regional ichthyofauna since unique evolutionary lineages are potentially threatened by environmental degradation, invasive species and construction of dams.


Barcode Cichlids Conservation Diversity Systematics 



The authors would like to thank FAPESB (RED0009/2013), “Rede de DNA barcoding da ictiofauna do Brasil” (MCT/CNPq/FNDCT 50/2010), and CNPq (610013/2011-4) for the financial support.

Supplementary material

10750_2017_3482_MOESM1_ESM.doc (60 kb)
Supplementary material 1 (DOC 60 kb)
10750_2017_3482_MOESM2_ESM.tif (6.8 mb)
Online Resource 2 PhyloMap PTP tree based on COI sequences of the samples of Geophagus brasiliensis complex from the present study and related species available in BOLD. The circles in the graph represent the taxa and species are indicated by distinct colors. The horizontal and vertical axis explained 65.80% and 13.56% of total variation, respectively. The thicker lines indicate that the length of branches in the original species tree is longer than those shown in the graph. Supplementary material 2 (TIFF 6962 kb)


  1. Almeida, J. S., P. R. A. M. Affonso, D. Diniz, P. L. Carneiro & A. L. Dias, 2013. Chromosomal variation in the tropical armoured catfish Callichthys callichthys (Siluriformes, Callichthyidae): implications for conservation and taxonomy in a species complex from a Brazilian hotspot. Zebrafish 10: 451–458.CrossRefPubMedGoogle Scholar
  2. Almeida, J. S., V. H. Migues, D. Diniz & P. R. A. M. Affonso, 2014. A unique sex chromosome system in the knifefish Gymnotus bahianus with inferences about chromosomal evolution of Gymnotidae. Journal of Heredity 106: 177–183.CrossRefGoogle Scholar
  3. Alves-Silva, A. P. & J. A. Dergam, 2015. Cryptic speciation within the Neotropical cichlid Geophagus brasiliensis (Quoy & Gaimard, 1824) (Teleostei Cichlidae): a new paradigm in karyotypical and molecular evolution. Zebrafish 12: 91–101.CrossRefPubMedGoogle Scholar
  4. Azpelicueta, M. M., M. Benítez, D. Aichino & C. M. D. Mendez, 2015. A new species of the genus Hoplias (Characiformes, Erythrinidae), a tararira from the lower Paraná River, in Misiones, Argentina. Acta Zoológica Lilloana 59: 71–82.Google Scholar
  5. Barrett, R. D. H. & P. D. N. Hebert, 2005. Identifying spiders through DNA barcodes. Canadian Journal of Zoology 83: 481–491.CrossRefGoogle Scholar
  6. Barrett, J. C., B. Fry, J. Maller & M. J. Daly, 2005. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21: 263–265.CrossRefPubMedGoogle Scholar
  7. Barreto, S. B., L. A. Nunes, A. T. Silva, R. Juca-Chagas, D. Diniz, I. Sampaio, H. Schneider & P. R. A. M. Affonso, 2016. Is Nematocharax (Actinopterygii, Characiformes) a monotypic fish genus? Genome 58: 191–192.Google Scholar
  8. Benine, R. C., R. M. C. Castro & A. C. A. Santos, 2007. A new Moenkhausia Eigenmann, 1903 (Ostariophysi: Characiformes) from Chapada Diamantina, rio Paraguaçu Basin, Bahia, Northeastern Brazil. Neotropical Ichthyology 5: 259–262.CrossRefGoogle Scholar
  9. Bertollo, L. A. C., G. G. Born, J. A. Dergam, A. S. Fenocchio & O. Moreira-Filho, 2000. A biodiversity approach in the neotropical Erythrinidae fish, Hoplias malabaricus. Karyotypic survey, geographic distribution of cytotypes and cytotaxonomic considerations. Chromosome Research 8: 603–613.CrossRefPubMedGoogle Scholar
  10. Bitencourt, J. A., P. R. A. M. Affonso, L. Giuliano-Caetano, P. L. S. Carneiro & A. L. Dias, 2012. Population divergence and peculiar karyoevolutionary trends in the loricariid fish Hypostomus aff. unae from northeastern Brazil. Genetics and Molecular Research 11: 933–943.CrossRefPubMedGoogle Scholar
  11. Blessing, J. J., J. C. Marshall & S. R. Balcombe, 2010. Humane killing of fishes for scientific research: a comparison of two methods. Journal of Fish Biology 76: 2571–2577.CrossRefPubMedGoogle Scholar
  12. Bickford, D., D. J. Lohman, N. S. Sodhi, P. K. L. Ng, R. Meier, K. Winker, K. K. Ingram & I. Das, 2007. Cryptic species as a window on diversity and conservation. Trends in Ecology & Evolution 22: 148–155.CrossRefGoogle Scholar
  13. Carnaval, A. C. & C. Moritz, 2008. Historical climate modeling predicts patterns of current biodiversity in the Brazilian Atlantic Forest. Journal of Biogeography 35: 1187–1201.CrossRefGoogle Scholar
  14. Carnaval, A. C., M. J. Hickerson, C. F. B. Haddad, M. T. Rodrigues & C. Moritz, 2009. Stability predicts genetic diversity in the Brazilian Atlantic Forest Hotspot. Science 323: 785–789.CrossRefPubMedGoogle Scholar
  15. Carvalho, D. C., D. A. A. Oliveira, O. S. Pompeu, C. G. Leal, C. Oliveira & R. Hanner, 2011. Deep barcode divergence in Brazilian freshwater fishes: the case of the São Francisco River Basin. Mitochondrial DNA 22: 80–86.CrossRefPubMedGoogle Scholar
  16. Castro, R. M. C. & R. Jucá-Chagas, 2008. Lignobrycon myersi (Miranda-Ribero, 1956). In: Ministério do Meio Ambiente (ed.), Livro Vermelho da Fauna Brasileira Ameaçada de Extinção. Brasília, DF: 75–77.Google Scholar
  17. Cetra, M., L. M. Sarmento-Soares & R. F. Pinheiro-Martins, 2010. Peixes de riachos e novas Unidades de Conservação no sul da Bahia. Pan-American Journal of Aquatic Sciences 5: 11–21.Google Scholar
  18. Chemale Jr., F., I. A. Dussin, M. Martins & M. N. Santos, 2011. Nova abordagem tectono-estratigráfica do Supergrupo Espinhaço em sua porção meridional (MG). Geonomos 19: 173–179.Google Scholar
  19. Farias, I. P., G. Ortí, I. Sampaio, H. Schneider & A. Meyer, 1999. Mitochondrial DNA phylogeny of the family Cichlidae: monophyly and fast molecular evolution of the Neotropical assemblage. Journal of Molecular Evolution 48: 703–711.CrossRefPubMedGoogle Scholar
  20. Ferreira, D. G., S. C. Lima, W. Frantine-Silva, J. F. Silva, C. Apolinário-Silva, S. H. Sofia, S. Carvalho & B. A. Galindo, 2016. Fine-scale genetic structure patterns in two freshwater fish species, Geophagus brasiliensis (Osteichthyes, Cichlidae) and Astyanax altiparanae (Osteichthyes, Characidae) throughout a Neotropical stream. Genetics and Molecular Research 15: gmr15048124.Google Scholar
  21. Freire, C. A., E. M. Amado, L. R. Souza, M. P. Veiga, J. R. Vitule, M. M. Souza & V. Prodocimo, 2008. Muscle water control in crustaceans and fishes as a function of habitat, osmoregulatory capacity, and degree of euryhalinity. Comparative Biochemistry and Physiology, Part A 149: 435–446.CrossRefGoogle Scholar
  22. Gomes, L. C., T. C. Pessali, N. G. Sales, P. S. Pompeu & D. C. Carvalho, 2015. Integrative taxonomy detects cryptic and overlooked fish species in a neotropical river basin. Genetica 143: 581–588.CrossRefPubMedGoogle Scholar
  23. Guindon, S., J. F. Dufayard, V. Lefort, M. Anisimova, W. Hordijk & O. Gascuel, 2010. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Systematic Biology 59: 307–321.CrossRefPubMedGoogle Scholar
  24. Hajibabaei, M., G. A. C. Singer, P. D. N. Hebert & D. A. Hickey, 2007. DNA barcoding: how it complements taxonomy, molecular phylogenetics and population genetics. Trends in Genetics 23: 167–172.CrossRefPubMedGoogle Scholar
  25. Hebert, P. D. N., A. Cywinska, S. L. Ball & J. R. Dewaard, 2003a. Biological identifications through DNA barcodes. Proceedings of the Royal Society of London B: Biological Sciences 270: 313–321.CrossRefGoogle Scholar
  26. Hebert, P. D. N., S. Ratnasingham & J. R. Waard, 2003b. Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proceedings of the Royal Society of London B: Biological Sciences 270: 96–99.CrossRefGoogle Scholar
  27. Hebert, P. D. N., M. Y. Stoeckle, T. S. Zemlak & C. M. Francis, 2004a. Identification of birds through DNA barcodes. Plos Biology 2: e312.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Hebert, P. D. N., E. H. Penton, J. M. Burns, D. H. Janzen & W. Hallwachs, 2004b. Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proceedings of the National Academy of Sciences of the United States of America 101: 14812–14817.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Huelsenbeck, J. P. & F. Ronquist, 2001. MRBAYES: Bayesian inference of phylogeny. Bioinformatics 17: 754–755.CrossRefPubMedGoogle Scholar
  30. Kadry, V. O. & R. E. Barreto, 2010. Environmental enrichment reduces aggression of pearl cichlid, Geophagus brasiliensis, during resident-intruder interactions. Neotropical Ichthyology 8: 329–332.CrossRefGoogle Scholar
  31. Kearse, M., R. Moir, A. Wilson, S. Stones-Havas, M. Cheung, S. Sturrock, S. Buxton, A. Cooper, S. Markowitz, C. Duran, T. Thierer, B. Ashton, P. Meintjes & A. Drummond, 2012. GENEIOUS Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bionformatics 28: 1647–1649.CrossRefGoogle Scholar
  32. Kimura, M., 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16: 111–120.CrossRefPubMedGoogle Scholar
  33. Kocher, T. D., 2004. Adaptive evolution and explosive speciation: the cichlid fish model. Nature Reviews Genetics 5: 288–298.CrossRefPubMedGoogle Scholar
  34. Kullander, S. O., 1983. Revision of the South American cichlid genus Cichlasoma. Swedish Museum of Natural History, Stockholm.Google Scholar
  35. Kullander, S. O., 1986. Cichlid fishes of the Amazon River drainage of Peru. Swedish Museum of Natural History, Stockholm.Google Scholar
  36. Kullander, S. O., 2003. Family Cichlidae. In Reis, R. E., S. O. Kullander & C. J. Ferraris (eds), Check List of Freshwater Fishes of South and Central America. Edipucs, Porto Alegre: 605–655.Google Scholar
  37. Librado, P. & J. Rozas, 2009. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25: 1451–1452.CrossRefPubMedGoogle Scholar
  38. López-Fernández, H. & D. C. Taphorn, 2004. Geophagus abalios, G. dicrozoster and G. winemilleri (Perciformes: cichlidae), three new species from Venezuela. Zootaxa 439: 1–27.CrossRefGoogle Scholar
  39. Lopez-Fernández, H., R. L. Honeycutt & K. O. Winemiller, 2005. Molecular phylogeny and evidence for an adaptive radiation of geophagine cichlids from South America (Perciformes: Labroidei). Molecular Phylogenetics and Evolution 34: 227–244.CrossRefPubMedGoogle Scholar
  40. Mattos, J. L. O., 2010. Revisão taxonômica do grupo de espécies Geophagus brasiliensis (Quoy e Gaimard, 1824) do leste do Brasil (Perciformes: Cichlidae). Master’s thesis, Universidade Federal do Rio de Janeiro, Rio de Janeiro.Google Scholar
  41. Mayden, R., 1997. A hierarchy of species concepts: the denouement in the saga of the species problem. In Claridge, M. F., H. A. Dawah & M. R. Wilson (eds), Species: The Units of Biodiversity. Chapman & Hall, London: 381–424.Google Scholar
  42. Medrado, A. S., M. S. Ribeiro, P. R. A. M. Affonso, P. L. S. Carneiro & M. A. Costa, 2012. Cytogenetic divergence in two sympatric fish species of the genus Astyanax Baird and Girard, 1854 (Characiformes, Characidae) from northeastern Brazil. Genetics and Molecular Biology 35: 797–801.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Ministério do Meio Ambiente. 2000. Avaliação e ações prioritárias para a conservação da biodiversidade da Mata Atlântica e Campos Sulinos por: Conservation International of Brazil, Fundação SOS Mata Atlântica, Fundação Biodiversitas, Instituto de Pesquisas Ecológicas, Secretaria do Meio Ambiente do Estado de São Paulo, SEMAD/Instituto Estadual de Florestas-MG. Brasília: MMA/SBF.Google Scholar
  44. Nogueira, C., P. A. Buckup, N. A. Menezes, O. T. Oyakawa, T. P. Kasecker, M. B. Ramos Neto & J. M. C. Silva, 2010. Restricted-range fishes and the conservation of Brazilian freshwaters. PloS ONE 5: e11390.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Oliveira, I. A., L. A. Argolo, J. A. Bitencourt, D. Diniz, M. R. Vicari & P. R. A. M. Affonso, 2016. Cryptic chromosomal diversity in the complex “Geophagusbrasiliensis (Perciformes, Cichlidae). Zebrafish 13: 33–44.CrossRefPubMedGoogle Scholar
  46. Pamponet, V. C. C., P. L. S. Carneiro, P. R. A. M. Affonso, V. S. Miranda, J. C. Silva Jr., C. G. Oliveira & F. A. Gaiotto, 2008. A multi-approach analysis of the genetic diversity in populations of Astyanax aff. bimaculatus Linnaeus, 1758 (Teleostei, Characidae) from Northeastern Brazil. Neotropical Ichthyology 6: 621–630.CrossRefGoogle Scholar
  47. Pereira, R., 1986. Peixes de nossa terra, Primeira ed. Nobel, São Paulo.Google Scholar
  48. Pereira, L. H. G., R. Hanner, F. Foresti & C. Oliveira, 2013. Can DNA barcoding accurately discriminate megadiverse Neotropical freshwater fish fauna? BMC Genetics 14: 14–20.CrossRefGoogle Scholar
  49. Pereira, L. H., G. M. Maia, R. Hanner, F. Foresti & C. Oliveira, 2011a. DNA barcodes discriminate freshwater fishes from the Paraíba do Sul River Basin, São Paulo, Brazil. Mitochondrial DNA 21: 71–79.CrossRefGoogle Scholar
  50. Pereira, L. H., M. F. Pazian, R. Hanner, F. Foresti & C. Oliveira, 2011b. DNA barcoding reveals hidden diversity in the Neotropical freshwater fish Piabina argentea (Characiformes: Characidae) from the Upper Paraná Basin of Brazil. Mitochondrial DNA 22: 87–96.CrossRefPubMedGoogle Scholar
  51. Pires, L. B., L. Giuliano-Caetano & A. L. Dias, 2009. Cytogenetic characterization of Geophagus brasiliensis and two species of Gymnogeophagus (Cichlidae: Geophaginae) from Guaíba Lake, RS, Brazil. Folia Biologica 58: 29–34.CrossRefGoogle Scholar
  52. Poletto, A. B., I. A. Ferreira, D. C. Cabral-de-Mello, R. T. Nakajima, J. Mazzuchelli, H. B. Ribeiro, P. C. Venere, M. Nirchio, T. D. Kocher & C. Martins, 2010. Chromosome differentiation patterns during cichlid fish evolution. BMC Genetics 11: 50.CrossRefPubMedPubMedCentralGoogle Scholar
  53. Posada, D., 2008. jModelTest: phylogenetic model averaging. Molecular Biology and Evolution 25: 1253–1256.CrossRefPubMedGoogle Scholar
  54. Puillandre, N., A. Lambert, S. Brouillet & G. Achaz, 2012. ABGD, Automatic Barcode Gap Discovery for primary species delimitation. Molecular Ecology 21: 1864–1877.CrossRefPubMedGoogle Scholar
  55. Ratnasingham, S. & P. D. N. Hebert, 2007. “Bold: The Barcode of Life Data System (” Molecular Ecology Notes 7: 355–364.
  56. Ratnasingham, S. & P. D. N. Hebert, 2013. A DNA-Based registry for all animal species: the Barcode Index Number (BIN) system. PLoS ONE 8: e66213.CrossRefPubMedPubMedCentralGoogle Scholar
  57. Razkin, O., B. J. Gómez-Moliner, K. Vardinoyannis, A. Martínez-Ortí & M. J. Madeira, 2017. Species delimitation for cryptic species complexes: case study of Pyramidula (Gastropoda, Pulmonata). Zoologica Scripta 46: 55–72.CrossRefGoogle Scholar
  58. Saitou, N. & M. Nei, 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4: 406–425.PubMedGoogle Scholar
  59. Sarmento-Soares, L. M. & R. F. Martins-Pinheiro, 2014. Uso inadequado das águas: a grande ameaça a sobrevivência das UCs na Mata Atlântica: o caso da REBIO Sooretama- ES. Boletim Sociedade Brasileira de Ictiologia 110: 16–18.Google Scholar
  60. Sarmento-Soares, L. M., A. M. Zanata & R. F. Martins-Pinheiro, 2011. Trichomycterus payaya, new catfish (Siluriformes: Trichomycteridae) from headwaters of rio Itapicuru, Bahia, Brazil. Neotropical Ichthyology 9: 261–271.CrossRefGoogle Scholar
  61. Severi, W., A. C. A. El-Deir, R. T. S. Félix, I. M. S. Araújo, S. C. S. Luz, A. V. Calado-Neto, B. D. F. Costa, R. J. Chagas & M. G. Barretto, M.G., 2010. Composição e abundância da ictiofauna na área de influência dos reservatórios de Pedra e Funil, bacia do rio de contas, Bahia. In: Moura, A. N., E. L. Araújo, M. C. Bittencourt-Oliveira, R. M. M. Pimentel & U. P. Albuquerque (eds), Reservatórios do nordeste do Brasil: biodiversidade, ecologia e manejo. Canal 6, Bauru, 1–576.Google Scholar
  62. Tamura, K., D. Peterson, N. Peterson, G. Stecher, M. Nei & S. Kumar, 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28: 2731–2739.CrossRefPubMedPubMedCentralGoogle Scholar
  63. Vasconcelos, M. F., A. V. Chaves & F. R. Santos, 2012. First record of Augastes scutatus for Bahia refines the location of a purported barrier promoting speciation in the Espinhaço range, Brazil. Revista Brasileira de Ornitologia 20: 443–446.Google Scholar
  64. Zhang, J., A. M. Mamlouk, T. Martinetz, S. Chang, J. Wang & R. Hilgenfeld, 2011. PhyloMap: an algorithm for visualizing relationships of large sequence data sets and its application to the influenza A virus genome. BMC bioinformatics 12: 248–267.CrossRefPubMedPubMedCentralGoogle Scholar
  65. Ward, R. D., 2009. DNA barcode divergence among species and genera of birds and fishes. Molecular Ecology Resources 9: 1077–1085.CrossRefPubMedGoogle Scholar
  66. Ward, R. D., T. S. Zemlak, B. H. Innes, P. R. Last & P. D. N. Hebert, 2005. DNA barcoding Australia’s fish species. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 360: 1847–1857.CrossRefGoogle Scholar
  67. Wimberger, P. H., 1992. Plasticity of fish body shape. The effects of diet, development, family and age in two species of Geophagus (Pisces: Cichlidae). Biological Journal of the Linnean Society 45: 197–218.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  • Cássio Ribeiro Souza
    • 1
  • Paulo Roberto Antunes de Mello Affonso
    • 1
    Email author
  • Jamille de Araújo Bitencourt
    • 1
  • Iracilda Sampaio
    • 2
  • Paulo Luiz Souza Carneiro
    • 1
  1. 1.Department of Biological SciencesUniversidade Estadual do Sudoeste da BahiaJequiéBrazil
  2. 2.Institute of Coastal StudiesUniversidade Federal do ParáBragançaBrazil

Personalised recommendations