How length of light exposure shapes the development of riverine algal biomass in temperate rivers?

Abstract

The impact of cumulative daily solar radiation (CDSR) on the biomass of river phytoplankton (Chl-a) in the growing season was studied using a large dataset of rivers in the Carpathian Basin. The amount of solar radiation was cumulated over the range of 1–60 days. The CDSR–Chl-a relationship could be described by linear regression and appeared to be significant for almost all watercourses with the exception of rivers with short water residence time. To determine the most relevant time period of CDSR impacting phytoplankton biomass, the slopes of regressions were plotted against the accumulating number of days of light exposure (1–60). Two characteristic shapes were obtained: unimodal for rhithral rivers with hard substrate and steady increase for lowland potamal rivers with fine substrate. In both cases, there is an increasing tendency in the slope values with water residence time (WRT). It was demonstrated that CDSR has a pronounced impact on river phytoplankton biomass even in cases when WRT was shorter than the cumulated solar radiation period. These results indicate that development of phytoplankton within the river channel is a complex process in which meroplankton dynamics may have significant impacts. Our results have two implications: First, CDSR cannot be neglected in predictive modelling of riverine phytoplankton biomass. Second, climate models forecast increased drought with subsequently increased CDSR in several regions globally, which may trigger a rise in phytoplankton biomass in light-limited rivers with high nutrient concentrations.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Abonyi, A., M. Leitão, I. Stanković, G. Borics, G. Várbíró & J. Padisák, 2014. A large river (River Loire, France) survey to compare phytoplankton functional approaches: do they display river zones in similar ways? Ecological Indicators 46: 11–22.

    Article  Google Scholar 

  2. Angstrom, A., 1924. Solar and terrestrial radiation. Quarterly Journal of the Royal Meteorological Society 50: 121–126.

    Article  Google Scholar 

  3. Birge, E. A., 1916. The work of the wind in warming a lake. Transactions of the Wisconsin Academy of Sciences, Arts, and Letters 18: 341–391.

    Google Scholar 

  4. Bolgovics, Á., É. Ács, G. Várbíró, K. T. Kiss, B. A. Lukács & G. Borics, 2015. Diatom composition of the rheoplankton in a rhithral river system. Acta Botanica Croatica 74: 303–316.

    CAS  Article  Google Scholar 

  5. Bolgovics, Á., G. Várbíró, É. Ács, Z. Trábert, K. T. Kiss, V. Pozderka, J. Görgényi, P. Boda, B. A. Lukács, Z. Nagy-László, A. Abonyi & G. Borics, 2017. Phytoplankton of rhithral rivers: its origin, diversity and possible use for quality-assessment. Ecological Indicators 81: 587–596.

    Article  Google Scholar 

  6. Borics, G., I. Grigorszky, S. Szabó & J. Padisák, 2000. Phytoplankton associations in a small hypertrophic fishpond in East Hungary during a change from bottom-up to top-down control. The Trophic Spectrum Revisited. Springer, Netherlands: 79–90.

    Google Scholar 

  7. Borics, G., J. Görgényi, I. Grigorszky, Z. László-Nagy, B. Tóthmérész, E. Krasznai & G. Várbíró, 2014. The role of phytoplankton diversity metrics in shallow lake and river quality assessment. Ecological Indicators 45: 28–36.

    CAS  Article  Google Scholar 

  8. Bukaveckas, P. A., A. MacDonald, A. Aufdenkampe, J. H. Chick, J. E. Havel, R. Schultz, T. R. Angradi, D. W. Bolgrien, T. M. Jicha & D. Taylor, 2011. Phytoplankton abundance and contributions to suspended particulate matter in the Ohio, Upper Mississippi and Missouri Rivers. Aquatic Sciences 73: 419–436.

    CAS  Article  Google Scholar 

  9. Cole, J. J., N. F. Caraco & B. L. Peierls, 1992. Can phytoplankton maintain a positive carbon balance in a turbid freshwater, tidal estuary? Limnology and Oceanography 37: 1608–1617.

    CAS  Article  Google Scholar 

  10. Dai, A., 2011. Drought under global warming: a review. WIREs Climate Change 2: 45–65.

    Article  Google Scholar 

  11. Descy, J. P. & V. Gosselain, 1994. Development and ecological importance of phytoplankton in a large lowland river (River Meuse, Belgium). Phytoplankton in Turbid Environments: Rivers and Shallow Lakes. Springer, Netherlands: 139–155.

    Google Scholar 

  12. Descy, J. P., P. Servais, J. S. Smitz, G. Billen & E. Everbecq, 1987. Phytoplankton biomass and production in the River Meuse (Belgium). Water Research 21: 1557–1566.

    CAS  Article  Google Scholar 

  13. Desortová, B. & P. Punčochář, 2011. Variability of phytoplankton biomass in a lowland river: response to climate conditions. Limnologica—Ecology and Management of Inland Waters 41: 160–166.

    Article  Google Scholar 

  14. Dokulil, M. T. & U. Donabaum, 2014. Phytoplankton of the Danube river: composition and long-term dynamics. Acta Zoologica Bulgarica 7: 147–152.

    Google Scholar 

  15. Erős, T., V. Bammer, Á. I. György, L. Pehlivanov, M. Schabuss, H. Zornig, A. Weiperth & Z. Szalóky, 2016. Typology of a Great River using fish assemblages: implications for the bioassessment of the Danube River. River Research and Applications 33: 37–49.

    Article  Google Scholar 

  16. Graf, W., B. Csányi, P. Leitner, M. Paunovic, G. Chiriac, I. Stubauer, T. Ofenböck & F. Wagner, 2008. Macroinvertebrate. In: I. Liška, F. Wagner, J. Slobodnik, Joint Danube Survey 2—Final Scientific Report, ICPDR—International Commission for The Protection of The Danube River, Vienna, 41–47.

  17. Hutchinson, G. E., 1961. The paradox of the plankton. The American Naturalist 95: 137–145.

    Article  Google Scholar 

  18. Istvánovics, V. & M. Honti, 2011. Phytoplankton growth in three rivers: the role of meroplankton and the benthic retention hypothesis. Limnology and Oceanography 56: 1439–1452.

    Article  Google Scholar 

  19. Kirk, J. T., 1985. Light and Photosynthesis in Aquatic Ecosystems. Cambridge University Press, Cambridge: 401.

    Google Scholar 

  20. Lengyel, E., J. Padisák & C. Stenger-Kovács, 2015. Establishment of equilibrium states and effect of disturbances on benthic diatom assemblages of the Torna-stream, Hungary. Hydrobiologia 750: 43–56.

    CAS  Article  Google Scholar 

  21. Lucas, L. V., J. K. Thompson & L. R. Brown, 2009. Why are diverse relationships observed between phytoplankton biomass and transport time? Limnology and Oceanography 54: 381–390.

    Article  Google Scholar 

  22. MSZ ISO 10260:1993 Water quality. Measurement of biochemical parameters. Spectrometric determination of the chlorophyll-a concentration.

  23. Ochs, C. A., O. Pongruktham & P. V. Zimba, 2013. Darkness at the break of noon: phytoplankton production in the Lower Mississippi River. Limnology and Oceanography 58: 555–568.

    CAS  Article  Google Scholar 

  24. Phillips, G., O. P. Pietiläinen, L. Carvalho, A. Solimini, A. L. Solheim & A. C. Cardoso, 2008. Chlorophyll–nutrient relationships of different lake types using a large European dataset. Aquatic Ecology 42: 213–226.

    CAS  Article  Google Scholar 

  25. Platts, W.S., 1983. Vegetation requirements for fisheries habitats. USDA Forest Service, General Technical Report INT, 157.

  26. Reynolds, C. S., 1984. The Ecology of Freshwater Phytoplankton. Cambridge University Press, Cambridge Reynolds.

    Google Scholar 

  27. Reynolds, C. S., 2006. The Ecology of Phytoplankton. Cambridge University Press, Cambridge.

    Google Scholar 

  28. Reynolds, C. S. & J. P. Descy, 1996. The production, biomass and structure of phytoplankton in large rivers. Archiv für Hydrobiologie, Supplement Large Rivers 113: 161–187.

    Google Scholar 

  29. Reynolds, C. S., A. Elliott & T. Irish, 2004. Modelling the dynamics of phytoplankton with the needs of the end user in mind. In Freshwater Forum 23: 38–47.

    Google Scholar 

  30. R Core Team, 2016. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.

  31. Rowell, D. P., 2009. Projected midlatitude continental summer drying: North America versus Europe. Journal of Climate 22: 2813–2833.

    Article  Google Scholar 

  32. Rowell, D. P. & R. G. Jones, 2006. Causes and uncertainty of future summer drying over Europe. Climate Dynamics 27: 281–299.

    Article  Google Scholar 

  33. Roy, S. & J. Chattopadhyay, 2007. Towards a resolution of ‘the paradox of the plankton’: a brief overview of the proposed mechanisms. Ecological Complexity 4: 26–33.

    Article  Google Scholar 

  34. Schmidt, A., 1994. Main characteristics of the phytoplankton of the Southern Hungarian section of the River Danube. Phytoplankton in Turbid Environments: Rivers and Shallow Lakes. Springer, Netherlands: 97–108.

    Google Scholar 

  35. Soballe, D. M. & B. L. Kimmel, 1987. A large-scale comparison of factors influencing phytoplankton abundance in rivers, lakes, and impoundments. Ecology 68: 1943–1954.

    CAS  Article  PubMed  Google Scholar 

  36. Sommer, U., 1989. The role of competition for resources in phytoplankton succession. Plankton Ecology. Springer, Berlin Heidelberg: 57–106.

    Google Scholar 

  37. Sommer, U., Z. M. Gliwicz, W. Lampert & A. Duncan, 1986. The PEG-model of seasonal succession of planktonic events in fresh waters. Archiv für Hydrobiologie 106: 433–471.

    Google Scholar 

  38. Stanković, I., T. Vlahović, M. Gligora Udovič, G. Várbíró & G. Borics, 2012. Phytoplankton functional and morpho-functional approach in large floodplain rivers. Hydrobiologia 698: 217–231.

    Article  Google Scholar 

  39. Sterner, R., S. S. Kilham, F. A. Johnson, R. W. Winner, T. Keeling, R. Yeager & M. P. Farrell, 1996. Factors regulating phytoplankton and zooplankton biomass in temperate rivers. Limnology and Oceanography 41: 1572–1577.

    Article  Google Scholar 

  40. Szász, G. 1997. Meteorológia—Mezőgazdasági Kiadó, Budapest, 267–280.

  41. Talling, J. F., 1957. The phytoplankton population as a compound photosynthetic system. New Phytologist 56: 133–149.

    Article  Google Scholar 

  42. Talling, J. F., 1971. The underwater light climate as a controlling factor in the production ecology of freshwater phytoplankton. Verhandlungen des Internationalen Verein Limnologie 19: 214–243.

    Google Scholar 

  43. Tapolczai, K., A. Bouchez, C. Stenger-Kovács, J. Padisák & F. Rimet, 2016. Trait-based ecological classifications for benthic algae: review and perspectives. Hydrobiologia 776: 1–17.

    Article  Google Scholar 

  44. Van Nieuwenhuyse, E. E. & J. R. Jones, 1996. Phosphorus chlorophyll relationship in temperate streams and its variation with stream catchment area. Canadian Journal of Fisheries and Aquatic Sciences 53: 99–105.

    Article  Google Scholar 

  45. Várbíró, G., É. Ács, G. Borics, K. Érces, G. Fehér, I. Grigorszky, T. Japport, G. Kocsis, E. Krasznai, K. Nagy, Z. Nagy-László & Z. Pilinszky, 2007. Use of Self-Organizing Maps (SOM) for characterization of riverine phytoplankton associations in Hungary. Archiv für Hydrobiologie 17: 383–394.

    Google Scholar 

  46. Whitehead, P. G., A. Howard & C. Arulmani, 1997. Modelling algal growth and transport in rivers: a comparison of time series analysis, dynamic mass balance and neural network techniques. Hydrobiologia 349: 39–46.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

Authors are financially supported by the GINOP-2.3.2-15-2016-00019 Project and by the MTA Postdoctoral Research Program (PD-019/2016). Partial support was provided by the Hungarian National Research, Development and Innovation Office (NKFIH K-120595).

Author information

Affiliations

Authors

Corresponding author

Correspondence to G. Várbíró.

Additional information

Handling editor: Luigi Naselli-Flores

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 45 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Várbíró, G., Padisák, J., Nagy-László, Z. et al. How length of light exposure shapes the development of riverine algal biomass in temperate rivers?. Hydrobiologia 809, 53–63 (2018). https://doi.org/10.1007/s10750-017-3447-1

Download citation

Keywords

  • Cumulative daily solar radiation
  • Phytoplankton
  • Residence time