Skip to main content
Log in

Crustacean metamorphosis: an omics perspective

  • CRUSTACEAN GENOMICS
  • Review Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Metamorphosis involves a complex network of genes that orchestrate a perfectly timed reorganization of one body form to another. The molecular pathways that start to unravel for an increasing number of species show that there exists great diversity among different species, as would be expected by their wide range of life histories and transformation strategies. The metamorphosis process could account for a considerably high percentile of transcribed sequences over a short period of time, with the genome encoding for different life forms. Such important changes in expression patterns for a high number of genes pose a challenge for accurately assign each gene to a function. Several key conserved factors are consistently expressed and can be placed at the center of metamorphosis, including the mechanisms involving the molt hormone, 20 Hydroxy-Ecdysone, and the juvenile hormone. Yet, many additional factors are not characterized, remain unannotated, or do not have a function assigned. This manuscript provides several examples of how an integrated omics approach can develop further insights into crustacean metamorphosis and eventually lead to discovery of key factors for metamorphosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aizen, J., J. C. Chandler, Q. P. Fitzgibbon, A. Sagi, S. C. Battaglene, A. Elizur & T. Ventura, 2016. Production of recombinant insulin-like androgenic gland hormones from three decapod species: in vitro testicular phosphorylation and activation of a newly identified tyrosine kinase receptor from the Eastern spiny lobster, Sagmariasus verreauxi. General and Comparative Endocrinology 229: 8–18.

    CAS  PubMed  Google Scholar 

  • Anger, K., 2001. The Biology of Decapod Crustacean Larvae, Vol. 14. AA Balkema Publishers, Lisse.

    Google Scholar 

  • Anger, K., G. Torres & L. Giménez, 2006. Metamorphosis of a sesarmid river crab, Armases roberti: stimulation by adult odours versus inhibition by salinity stress. Marine and Freshwater Behaviour and Physiology 39(4): 269–278.

    Google Scholar 

  • Ashburner, M., 1973. Sequential gene activation by ecdysone in polytene chromosomes of Drosophila melanogaster. Developmental Biology 35(1): 47–61.

    CAS  PubMed  Google Scholar 

  • Bauer, M., S. J. Greenwood, K. F. Clark, P. Jackman & W. Fairchild, 2013. Analysis of gene expression in Homarus americanus larvae exposed to sublethal concentrations of endosulfan during metamorphosis. Comp Biochem Physiol Part D Genomics Proteomics 8(4): 300–308.

    CAS  PubMed  Google Scholar 

  • Bitra, K. & S. R. Palli, 2009. Interaction of proteins involved in ecdysone and juvenile hormone signal transduction. Archives of Insect Biochemistry and Physiology 70(2): 90–105.

    CAS  PubMed  Google Scholar 

  • Booth, J. D. & B. F. Phillips, 1994. Early life history of spiny lobster. Crustaceana 66(3): 271–294.

    Google Scholar 

  • Bose, U., T. Kruangkum, T. Wang, M. Zhao, T. Ventura, S. A. Mitu, M. P. Hodson, P. N. Shaw, P. Sobhon & S. F. Cummins, 2017. Biomolecular changes that occur in the antennal gland of the giant freshwater prawn (Machrobrachium rosenbergii). PLoS ONE 12(6): e0177064.

    PubMed  PubMed Central  Google Scholar 

  • Brown, D. D. & L. Cai, 2007. Amphibian metamorphosis. Developmental Biology 306(1): 20–33.

    CAS  PubMed  Google Scholar 

  • Buckley, S. J., Q. P. Fitzgibbon, G. G. Smith & T. Ventura, 2016. In silico prediction of the G-protein coupled receptors expressed during the metamorphic molt of Sagmariasus verreauxi (Crustacea: Decapoda) by mining transcriptomic data: RNA-seq to repertoire. General and Comparative Endocrinology 228: 111–127.

    CAS  PubMed  Google Scholar 

  • Chandler, J. C., J. Aizen, A. Elizur, L. Hollander-Cohen, S. Battaglene & T. Ventura, 2015. Discovery of a novel insulin-like peptide and insulin binding proteins in the Eastern rock lobster Sagmariasus verreauxi. General and Comparative Endocrinology 215: 76–87.

    CAS  PubMed  Google Scholar 

  • Chang, E. S. & D. L. Mykles, 2011. Regulation of crustacean molting: a review and our perspectives. General and Comparative Endocrinology 172(3): 323–330.

    CAS  PubMed  Google Scholar 

  • Charles, J.-P., T. Iwema, V. C. Epa, K. Takaki, J. Rynes & M. Jindra, 2011. Ligand-binding properties of a juvenile hormone receptor, Methoprene-tolerant. Proceedings of the National Academy of Sciences United States of America 108(52): 21128–21133.

    CAS  Google Scholar 

  • Chung, A. C., D. S. Durica, S. W. Clifton, B. A. Roe & P. M. Hopkins, 1998. Cloning of crustacean ecdysteroid receptor and retinoid-X receptor gene homologs and elevation of retinoid-X receptor mRNA by retinoic acid. Molecular and Cellular Endocrinology 139(1–2): 209–227.

    CAS  Google Scholar 

  • Comas, D., M. D. Piulachs & X. Belles, 2001. Induction of vitellogenin gene transcription in vitro by juvenile hormone in Blattella germanica. Molecular and Cellular Endocrinology 183(1–2): 93–100.

    CAS  PubMed  Google Scholar 

  • Daimon, T. & T. Shinoda, 2013. Function, diversity, and application of insect juvenile hormone epoxidases (CYP15). Biotechnology and Applied Biochemistry 60(1): 82–91.

    CAS  PubMed  Google Scholar 

  • Daimon, T., T. Kozaki, R. Niwa, I. Kobayashi, K. Furuta, T. Namiki, K. Uchino, Y. Banno, S. Katsuma, T. Tamura, K. Mita, H. Sezutsu, M. Nakayama, K. Itoyama, T. Shimada & T. Shinoda, 2012. Precocious metamorphosis in the juvenile hormone—deficient mutant of the silkworm, Bombyx mori. PLoS Genetics 8(3): e1002486.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Daneholt, B., 1975. Transcription in polytene chromosomes. Cell 4(1): 1–9.

    CAS  PubMed  Google Scholar 

  • Das, S., N. L. Pitts, M. R. Mudron, D. S. Durica & D. L. Mykles, 2016. Transcriptome analysis of the molting gland (Y-organ) from the blackback land crab, Gecarcinus lateralis. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics 17: 26–40.

    CAS  Google Scholar 

  • Denton, D., M. T. Aung-Htut & S. Kumar, 2013. Developmentally programmed cell death in Drosophila. Biochimica et Biophysica Acta (BBA)—MolecularCell Research 1833(12): 3499–3506.

    CAS  Google Scholar 

  • Durica, D. S., X. Wu, G. Anilkumar, P. M. Hopkins & A. C. Chung, 2002. Characterization of crab EcR and RXR homologs and expression during limb regeneration and oocyte maturation. Molecular and Cellular Endocrinology 189(1–2): 59–76.

    CAS  PubMed  Google Scholar 

  • Dworniczak, B., R. Seidel & O. Pongs, 1983. Puffing activities and binding of ecdysteroid to polytene chromosomes of Drosophila melanogaster. The EMBO Journal 2(8): 1323–1330.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Echalier, G., 1959. L’organe Y et le déterminisme de la croissance et de la mue chez Carcinus maenas (L.). Crustacé Décapode. Ann Sci Nat Zool 12: 1–59.

    Google Scholar 

  • Feyereisen, R., 2011. Arthropod CY Pomes illustrate the tempo and mode in P450 evolution. Biochimica et Biophysica Acta (BBA)—Proteins and Proteomic 1814(1): 19–28.

    CAS  Google Scholar 

  • Fitzgibbon, Q. P., A. G. Jeffs & S. C. Battaglene, 2014. The Achilles heel for spiny lobsters: the energetics of the non-feeding post-larval stage. Fish and Fisheries 15(2): 312–326.

    Google Scholar 

  • Fuchs, B., W. Wang, S. Graspeuntner, Y. Li, S. Insua, E.-M. Herbst, P. Dirksen, A.-M. Böhm, G. Hemmrich, F. Sommer, T. Domazet-Loao, Ulrich C. Klostermeier, F. Anton-Erxleben, P. Rosenstiel, Thomas C. G. Bosch & K. Khalturin, 2014. Regulation of polyp-to-jellyfish transition in Aurelia aurita. Current Biology: CB 24: 1–11.

    Google Scholar 

  • Gabe, M., 1953. Sur l’existence, chez quelques Crustacés Malacostacés, d’un organe comparable à la glande de la mue des Insectes. CR Hebd Seances Acad Sci 237: 1111–1113.

    CAS  Google Scholar 

  • Garcia-Bellido, A., 1975. Genetic Control of Wing Disc Development in Drosophila Cell Patterning. Wiley, New York: 161–182.

    Google Scholar 

  • Gebauer, P., I. Walter & K. Anger, 1998. Effects of substratum and conspecific adults on the metamorphosis of Chasmagnathus granulata (Dana) (Decapoda: Grapsidae) megalopae. Journal of Experimental Marine Biology and Ecology 223(2): 185–198.

    Google Scholar 

  • Gilbert, L. & R. Rybczynski, 2008. Prothoracicotropic Hormone. In Capinera, J. (ed.), Encyclopedia of Entomology. Springer, Netherlands: 3055–3061.

    Google Scholar 

  • Girish, B. P., C. Swetha & P. S. Reddy, 2015. Induction of ecdysteroidogenesis, methyl farnesoate synthesis and expression of ecdysteroid receptor and retinoid X receptor in the hepatopancreas and ovary of the giant mud crab, Scylla serrata by melatonin. General and Comparative Endocrinology 217–218: 37–42.

    PubMed  Google Scholar 

  • Gong, J., H. Ye, Y. Xie, Y. Yang, H. Huang, S. Li & C. Zeng, 2015. Ecdysone receptor in the mud crab Scylla paramamosain: a possible role in promoting ovarian development. Journal of Endocrinology 224(3): 273–287.

    CAS  Google Scholar 

  • Guay, P. S. & G. M. Guild, 1991. The ecdysone-induced puffing cascade in Drosophila salivary glands: a broad-complex early gene regulates intermolt and late gene transcription. Genetics 129(1): 169–175.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guittard, E., C. Blais, A. Maria, J.-P. Parvy, S. Pasricha, C. Lumb, R. Lafont, P. J. Daborn & C. Dauphin-Villemant, 2011. CYP18A1, a key enzyme of Drosophila steroid hormone inactivation, is essential for metamorphosis. Developmental Biology 349(1): 35–45.

    CAS  PubMed  Google Scholar 

  • Hansen, I., G. Attardo, S. Rodriguez & L. Drake, 2014. Four-way regulation of mosquito yolk protein precursor genes by juvenile hormone-, ecdysone-, nutrient-, and insulin-like peptide signaling pathways. Frontiers in Physiology 5: 103.

    PubMed  PubMed Central  Google Scholar 

  • Helvig, C., J. F. Koener, G. C. Unnithan & R. Feyereisen, 2004. CYP15A1, the cytochrome P450 that catalyzes epoxidation of methyl farnesoate to juvenile hormone III in cockroach corpora allata. Proceedings of the National Academy of Sciences United States of America 101(12): 4024–4029.

    CAS  Google Scholar 

  • Hopkins, P. M. & M. Fingerman, 1989. Development, maturation and aging in the crustacean neuroendocrine system. In Schreibman, M. P. & C. G. Scanes (eds), Development, Maturation, and Senescence of Neuroendocrine Systems A Comparative Approach. Academic Press Inc, San Diego: 23–42.

    Google Scholar 

  • Jeffs, A. G., P. D. Nichols & M. P. Bruce, 2001. Lipid reserves used by pueruli of the spiny lobster Jasus edwardsii in crossing the continental shelf of New Zealand. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 129(2): 305–311.

    CAS  Google Scholar 

  • Jeffs, A. G., J. C. Montgomery & C. T. Tindle, 2005. How do spiny lobster post-larvae find the coast? New Zealand Journal of Marine and Freshwater Research 39(3): 605–617.

    Google Scholar 

  • King-Jones, K. & C. S. Thummel, 2005. Nuclear receptors—a perspective from Drosophila. Nature Reviews Genetics 6(4): 311–323.

    CAS  PubMed  Google Scholar 

  • Laudet, V., 2011. The origins and evolution of vertebrate metamorphosis. Current Biology 21(18): R726–R737.

    CAS  PubMed  Google Scholar 

  • Laufer, H. & W. J. Biggers, 2001. Unifying concepts learned from methyl farnesoate for invertebrate reproduction and post-embryonic development. American Zoologist 41(3): 442–457.

    CAS  Google Scholar 

  • Laufer, H., D. Borst, F. C. Baker, C. C. Reuter, L. W. Tsai, D. A. Schooley, C. Carrasco & M. Sinkus, 1987. Identification of a juvenile hormone-like compound in a crustacean. Science 235(4785): 202–205.

    CAS  PubMed  Google Scholar 

  • Le, S. Q. & O. Gascuel, 2008. An improved general amino acid replacement matrix. Molecular Biology and Evolution 25(7): 1307–1320.

    CAS  PubMed  Google Scholar 

  • Li, Y., M. Hui, Z. Cui, Y. Liu, C. Song & G. Shi, 2015. Comparative transcriptomic analysis provides insights into the molecular basis of the metamorphosis and nutrition metabolism change from zoeae to megalopae in Eriocheir sinensis. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics 13: 1–9.

    Google Scholar 

  • Liu, L., H. Laufer, Y. Wang & T. Hayes, 1997. A neurohormone regulating both methyl farnesoate synthesis and glucose metabolism in a crustacean. Biochemical and Biophysical Research Communications 237(3): 694–701.

    CAS  PubMed  Google Scholar 

  • Martin, A., Julia M. Serano, E. Jarvis, Heather S. Bruce, J. Wang, S. Ray, Carryn A. Barker, Liam C. O’Connell & Nipam H. Patel, 2016. CRISPR/Cas9 mutagenesis reveals versatile roles of Hox genes in crustacean limb specification and evolution. Current Biology 26(1): 14–26.

    CAS  PubMed  Google Scholar 

  • Martín, M., M. F. Organista & J. F. de Celis, 2016. Structure of developmental gene regulatory networks from the perspective of cell fate-determining genes. Transcription 7(1): 32–37.

    PubMed  PubMed Central  Google Scholar 

  • Miyakawa, H., K. Toyota, I. Hirakawa, Y. Ogino, S. Miyagawa, S. Oda, N. Tatarazako, T. Miura, J. K. Colbourne & T. Iguchi, 2013. A mutation in the receptor Methoprene-tolerant alters juvenile hormone response in insects and crustaceans. Nature Communications 4: 1856.

    PubMed  Google Scholar 

  • Mykles, D. L., 2011. Ecdysteroid metabolism in crustaceans. The Journal of Steroid Biochemistry and Molecular Biology 127(3–5): 196–203.

    CAS  PubMed  Google Scholar 

  • Nagai, C., H. Mabashi-Asazuma, H. Nagasawa & S. Nagata, 2014. Identification and characterization of receptors for ion transport peptide (ITP) and ITP-like (ITPL) in the silkworm Bombyx mori. Journal of Biological Chemistry 289(46): 32166–32177.

    CAS  Google Scholar 

  • Nagaraju, G. P. C., N. J. Suraj & P. S. Reddy, 2003. Methyl farnesoate stimulates gonad development in Macrobrachium malcolmsonii (H. Milne Edwards) (Decapoda, Palaemonidae). Crustaceana 76(10): 1171–1178.

    Google Scholar 

  • Nagaraju, G. P., B. Rajitha & D. W. Borst, 2011. Molecular cloning and sequence of retinoid X receptor in the green crab Carcinus maenas: a possible role in female reproduction. Journal of Endocrinology 210(3): 379–390.

    CAS  Google Scholar 

  • Palero, F., P. F. Clark & G. Guerao, 2014. Infraorden Achelata. In Martin, J., J. Olesen & J. Hoeg (eds), Atlas of Crustacean Larvae. Johns Hopkins University Press, Maryland: 272–278.

    Google Scholar 

  • Parthasarathy, R., Z. Sheng, Z. Sun & S. R. Palli, 2010. Ecdysteroid regulation of ovarian growth and oocyte maturation in the red flour beetle, Tribolium castaneum. Insect Biochemistry and Molecular Biology 40(6): 429–439.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pechenik, J. A., 1990. Delayed metamorphosis by larvae of benthic marine invertebrates: does it occur? Is there a price to pay? Ophelia 32(1–2): 63–94.

    Google Scholar 

  • Pechenik, J. A., 2006. Larval experience and latent effects—metamorphosis is not a new beginning. Integrative and Comparative Biology 46(3): 323–333.

    PubMed  Google Scholar 

  • Petryk, A., J. T. Warren, G. Marques, M. P. Jarcho, L. I. Gilbert, J. P. Parvy, C. Dauphin-Villemant & M. B. O’Connor, 2003. Shade is the Drosophila P450 enzyme that mediates the hydroxylation of ecdysone to the steroid insect molting hormone 20-hydroxyecdysone. Proceedings of the National Academy of Sciences United States of America. https://doi.org/10.1073/pnas.2336088100.

    Article  Google Scholar 

  • Pine, M. K., A. G. Jeffs & C. A. Radford, 2016. Effects of underwater turbine noise on crab larval metamorphosis. In Popper, A. N. & A. Hawkins (eds), The Effects of Noise on Aquatic Life II. Springer, New York: 847–852.

    Google Scholar 

  • Powell, D., W. Knibb, C. Remilton & A. Elizur, 2015. De-novo transcriptome analysis of the banana shrimp (Fenneropenaeus merguiensis) and identification of genes associated with reproduction and development. Marine Genomics 22: 71–78.

    PubMed  Google Scholar 

  • Qian, Z., S. He, T. Liu, Y. Liu, F. Hou, Q. Liu, X. Wang, X. Mi, P. Wang & X. Liu, 2014. Identification of ecdysteroid signaling late-response genes from different tissues of the Pacific white shrimp, Litopenaeus vannamei. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 172: 10–30.

    CAS  Google Scholar 

  • Qu, Z., N. J. Kenny, H. M. Lam, T. F. Chan, K. H. Chu, W. G. Bendena, S. S. Tobe & J. H. L. Hui, 2015. How did arthropod sesquiterpenoids and ecdysteroids arise? comparison of hormonal pathway genes in noninsect arthropod genomes. Genome Biology and Evolution 7(7): 1951–1959.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Raviv, S., S. Parnes & A. Sagi, 2008. Coordination of Reproduction and Molt in Decapods. In Mente, E. (ed.), Reproductive Biology of Crustaceans Case Studies of Decapod Crustaceans. Science Publishers, Boca Raton: 365–390.

    Google Scholar 

  • Rewitz, K. F., R. Rybczynski, J. T. Warren & L. I. Gilbert, 2006a. The Halloween genes code for cytochrome P450 enzymes mediating synthesis of the insect moulting hormone. Biochemical Society Transactions. https://doi.org/10.1042/BST0341256.

    Article  PubMed  Google Scholar 

  • Rewitz, K. F., R. Rybczynski, J. T. Warren & L. I. Gilbert, 2006b. Identification, characterization and developmental expression of Halloween genes encoding P450 enzymes mediating ecdysone biosynthesis in the tobacco hornworm, Manduca sexta. Insect Biochem Mol Biol. https://doi.org/10.1016/j.ibmb.2005.12.002.

    Article  PubMed  Google Scholar 

  • Rewitz, K. F., M. B. O’Connor & L. I. Gilbert, 2007. Molecular evolution of the insect Halloween family of cytochrome P450s: phylogeny, gene organization and functional conservation. Insect Biochemistry and Molecular Biology 37(8): 741–753.

    CAS  PubMed  Google Scholar 

  • Rotllant, G., N. Pascual, F. Sarda, P. Takac & H. Laufer, 2001. Identification of Methyl Farnesoate in the hemolymph of the Mediterranean deep-sea species Norway lobster, Nephrops norvegicus. Journal of Crustacean Biology 21(2): 328–333.

    Google Scholar 

  • Sagi, A., R. Manor & T. Ventura, 2013. Gene silencing in crustaceans: from basic research to biotechnologies. Genes. https://doi.org/10.3390/genes4040620.

    Article  PubMed  PubMed Central  Google Scholar 

  • Scholtz, G., 2004. Evolutionary Developmental Biology of Crustacea, Illustrated ed. Taylor & Francis, Routledge.

    Google Scholar 

  • Sharabi, O., R. Manor, S. Weil, E. D. Aflalo, Y. Lezer, T. Levy, J. Aizen, T. Ventura, P. B. Mather, I. Khalaila & A. Sagi, 2015. Identification and characterization of an insulin-like receptor involved in crustacean reproduction. Endocrinology 157(2): 928–941.

    PubMed  Google Scholar 

  • Sin, Y. W., N. J. Kenny, Z. Qu, K. W. Chan, K. W. S. Chan, S. P. S. Cheong, R. W. T. Leung, T. F. Chan, W. G. Bendena, K. H. Chu, S. S. Tobe & J. H. L. Hui, 2015. Identification of putative ecdysteroid and juvenile hormone pathway genes in the shrimp Neocaridina denticulata. General and Comparative Endocrinology 214: 167–176.

    CAS  PubMed  Google Scholar 

  • Stanley, J. A., J. Hesse, I. A. Hinojosa & A. G. Jeffs, 2015. Inducers of settlement and moulting in post-larval spiny lobster. Oecologia 178(3): 685–697.

    PubMed  Google Scholar 

  • Talbot, W. S., E. A. Swyryd & D. S. Hogness, 1993. Drosophila tissues with different metamorphic responses to ecdysone express different ecdysone receptor isoforms. Cell 73(7): 1323–1337.

    CAS  PubMed  Google Scholar 

  • Tamura, K., G. Stecher, D. Peterson, A. Filipski & S. Kumar, 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution 30(12): 2725–2729.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Techa, S. & J. S. Chung, 2013. Ecdysone and retinoid-X receptors of the blue crab, Callinectes sapidus: cloning and their expression patterns in eyestalks and Y-organs during the molt cycle. Gene 527(1): 139–153.

    CAS  PubMed  Google Scholar 

  • Thiyagarajan, V., 2010. A review on the role of chemical cues in habitat selection by barnacles: new insights from larval proteomics. Journal of Experimental Marine Biology and Ecology 392(1): 22–36.

    Google Scholar 

  • Tobe, S. S. & W. G. Bendena, 1999. The regulation of juvenile hormone production in arthropods: functional and evolutionary perspectives. Annals of the New York Academy of Sciences 897(1): 300–310.

    CAS  PubMed  Google Scholar 

  • Ventura, T., O. Rosen & A. Sagi, 2011. From the discovery of the crustacean androgenic gland to the insulin-like hormone in six decades. General and Comparative Endocrinology 173(3): 381–388.

    CAS  PubMed  Google Scholar 

  • Ventura, T., R. Manor, E. D. Aflalo, V. Chalifa-Caspi, S. Weil, O. Sharabi & A. Sagi, 2013. Post-embryonic transcriptomes of the prawn Macrobrachium rosenbergii: multigenic succession through metamorphosis. PLoS ONE 8(1): e55322.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ventura, T., S. F. Cummins, Q. Fitzgibbon, S. Battaglene & A. Elizur, 2014. Analysis of the central nervous system transcriptome of the eastern rock lobster Sagmariasus verreauxi reveals its putative neuropeptidome. PLoS ONE 9(5): e97323.

    PubMed  PubMed Central  Google Scholar 

  • Ventura, T., Q. P. Fitzgibbon, S. C. Battaglene & A. Elizur, 2015. Redefining metamorphosis in spiny lobsters: molecular analysis of the phyllosoma to puerulus transition in Sagmariasus verreauxi. Scientific Reports 5:13537. http://www.nature.com/articles/srep13537#supplementary-information.

  • Ventura, T., U. Bose, Q. P. Fitzgibbon, G. G. Smith, P. N. Shaw, S. F. Cummins & A. Elizur, 2017. CYP450 s analysis across spiny lobster metamorphosis identifies a long sought missing link in crustacean development. The Journal of Steroid Biochemistry and Molecular Biology 171: 262–269.

    CAS  PubMed  Google Scholar 

  • Webster, S. G., R. Keller & H. Dircksen, 2012. The CHH-superfamily of multifunctional peptide hormones controlling crustacean metabolism, osmoregulation, moulting, and reproduction. General and Comparative Endocrinology 175(2): 217–233.

    CAS  PubMed  Google Scholar 

  • Wei, J., X. Zhang, Y. Yu, H. Huang, F. Li & J. Xiang, 2014. Comparative transcriptomic characterization of the early development in pacific white shrimp Litopenaeus vannamei. PLoS ONE 9(9): e106201.

    PubMed  PubMed Central  Google Scholar 

  • Wen, D., C. Rivera-Perez, M. Abdou, Q. Jia, Q. He, X. Liu, O. Zyaan, J. Xu, W. G. Bendena, S. S. Tobe, F. G. Noriega, S. R. Palli, J. Wang & S. Li, 2015. Methyl Farnesoate plays a dual role in regulating Drosophila metamorphosis. PLoS Genetics 11(3): e1005038.

    PubMed  PubMed Central  Google Scholar 

  • Zhao, W.-L., C.-Y. Liu, W. Liu, D. Wang, J.-X. Wang & X.-F. Zhao, 2014. Methoprene-tolerant 1 regulates gene transcription to maintain insect larval status. Journal of Molecular Endocrinology 53(1): 93–104.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The current study was supported by the Australian Research Council Discovery Project (DP160103320) and the Marie Curie International Research Staff Exchange Scheme Fellowship within the 7th European Community Framework Programme (612296-DeNuGReC). FP acknowledges the project CHALLENGEN (CTM2013-48163) of the Spanish Government and a post-doctoral contract funded by the Beatriu de Pinos Programme of the Generalitat de Catalunya.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomer Ventura.

Additional information

Guest editors: Ferran Palero, Guiomar Rotllant, Peter Mather, Heather Bracken-Grissom & Begoña Santos / Crustacean Genomics

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TXT 34 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ventura, T., Palero, F., Rotllant, G. et al. Crustacean metamorphosis: an omics perspective. Hydrobiologia 825, 47–60 (2018). https://doi.org/10.1007/s10750-017-3445-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-017-3445-3

Keywords

Navigation