, Volume 817, Issue 1, pp 111–119 | Cite as

DNA barcoding as a useful tool for identifying non-native species of freshwater ichthyoplankton in the neotropics

  • Fernanda S. Almeida
  • Wilson Frantine-Silva
  • Same C. Lima
  • Diego A. Z. Garcia
  • Mário L. Orsi


The objective of our study was to evaluate the efficacy of DNA barcoding as a tool to identify non-native fish in their early stages of life. Specimens were collected from 14 sites in the lower and middle regions of the Paranapanema River—the main tributary of the Upper Paraná River basin in southern Brazil. Over three reproductive periods from 2012 and 2015, 75 eggs and 170 larvae from 13 non-native fish species were identified. The most abundant species were Plagioscion squamosissimus (75 specimens) and Serrasalmus marginatus (68 specimens). The highest abundance was found near the Rosana hydroelectric plant reservoir. The removal of the natural physical barrier is the main reason that fish are introduced into the Paranapanema River basin with higher occurrence in the Rosana reservoir. P. squamosissimus was found in all reservoirs. DNA barcoding is a useful tool for identifying non-native fish during their reproductive phase. Furthermore, recording the presence of potentially invasive species in their early development stages may provide information useful for the rapid and effective control.


Biodiversity COI Conservation Barcode Ichthyoplankton 

Supplementary material

10750_2017_3443_MOESM1_ESM.pdf (10 kb)
Fig. S1 BOLD TaxonID Tree for non-native fish species identified by DNA barcoding data along the lower–middle Paranapanema River (PDF 10 kb)


  1. Agostinho, C. S. & H. F. Julio Jr., 2002. Observation of an invasion of the piranha Serrasalmus marginatus Velenciennes, 1947(Osteichthyes, Serrasalmidae) into the Upper Parana River, Brazil. Acta Scientiarum 24: 391–395.Google Scholar
  2. Agostinho, A. A., S. M. Thomaz & L. C. Gomes, 2005. Conservation of the biodiversity of Brazil’s inland waters. Conservation Biology 19: 646–652.CrossRefGoogle Scholar
  3. Agostinho, A. A., F. M. Pelicice & L. C. Gomes, 2008. Dams and the fish fauna of the Neotropical region: impacts and management related to diversity and Fisheries. Brazilian Journal of Biology 68: 1119–1132.CrossRefGoogle Scholar
  4. Alexandre, P. C., E. A. Luiz, P. A. Piana, L. C. Gomes & A. A. Agostinho, 2008. Relação estoque-recrutamento para as piranhas Serrasalmus marginatus (Valenciennes, 1847) e S. maculatus (Kner, 1860) no rio Baía, alto rio Paraná. Acta Scientiarum: Biological Sciences 26: 303–307.Google Scholar
  5. Azevedo-Santos, V. M., J. R. S. Vitule, E. García-Berthou, F. M. Pelicice & D. Simberloff, 2016. Misguided strategy for mosquito control. Science 351: 675.CrossRefPubMedGoogle Scholar
  6. Baumgartner, G., K. Nakatani, L. C. Gomes, A. Bialetzki & P. V. Sanches, 2004. Identification of spawning sites and natural nurseries of fishes in the upper Paraná River, Brazil. Environmental Biology of Fishes 71: 115–125.CrossRefGoogle Scholar
  7. Baumgartner, G., K. Nakatani, L. C. Gomes, A. Bialetzki, P. V. Sanches & M. C. Makrakis, 2008. Fish larvae from the upper Paraná River: do abiotic factors affect larval density? Neotropical Ichthyology 6: 551–558.CrossRefGoogle Scholar
  8. Bax, N., J. T. Carlton, A. Mathews-Amos, R. L. Haedrich, F. G. Howarth, J. E. Purcell, A. Rieser & A. Gray, 2001. The control of biological invasions in the world’s oceans. Conservation Biology 15: 1234–1246.CrossRefGoogle Scholar
  9. Bialetzki, A., K. Nakatani, P. V. Sanches, G. Baumgartner & L. C. Gomes, 2005. Larval fish assemblage in the Baía River (Mato Grosso do Sul State, Brazil): temporal and spatial patterns. Environmental Biology of Fishes 73: 37–47.CrossRefGoogle Scholar
  10. Blackburn, T. M., P. Pysek, S. Bacher, J. T. Carlton, R. P. Duncan, V. Jarosík, J. R. U. Wilson & D. M. Richardson, 2011. A proposed unified framework for biological invasions. Trends in Ecology and Evolution 26: 333–339.CrossRefPubMedGoogle Scholar
  11. Briski, E., M. E. Cristescu, S. A. Bailey & H. J. MacIsaac, 2011. Use of DNA barcoding to detect invertebrate invasive species from diapausing eggs. Biological Invasions 13: 1325–1340.CrossRefGoogle Scholar
  12. Briski, E., S. Ghabooli, S. A. Bailey & H. J. MacIsaac, 2016. Are genetic databases sufficiently populated to detect non-indigenous species? Biological Invasions 18: 1911–1922.CrossRefGoogle Scholar
  13. Colautti, R. I. & H. J. MacIsaac, 2004. A neutral terminology for defining invasive species. Diversity and Distributions 10: 135–141.CrossRefGoogle Scholar
  14. Comtet, T., A. Sandionigi, F. Viard & M. Casiraghi, 2015. DNA (meta) barcoding of biological invasions: a powerful tool to elucidate invasion processes and help managing aliens. Biological Invasions 17: 905–922.CrossRefGoogle Scholar
  15. Consuegra, S., N. Phillips, G. Gajardo & C. G. de Leaniz, 2011. Winning the invasion roulette: escapes from fish farms increase admixture and facilitate establishment of nonnative rainbow trout. Evolutionary Applications 4: 660–671.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Didham, R. K., J. M. Tylianakis, N. J. Gemmell, T. A. Rand & R. M. Ewers, 2007. Interactive effects of habitat modification and species invasion on native species decline. Trends in Ecolology and Evolution 22: 489–496.CrossRefGoogle Scholar
  17. Frantine-Silva, W., S. H. Sofia, M. L. Orsi & F. S. Almeida, 2015. DNA barcoding of freshwater ichthyoplankton in the Neotropics as a tool for ecological monitoring. Molecular Ecology Resources 15: 1226–1237.CrossRefPubMedGoogle Scholar
  18. Goodwin, N. B., S. Balshine-Earn & J. D. Reynolds, 1998. Evolutionary transitions in parental care in cichlid fish. Proceedings of the Royal Society of London B: Biological Sciences 265: 2265–2272.CrossRefGoogle Scholar
  19. Havel, J. E., C. E. Lee & J. M. Vander Zanden, 2005. Do reservoirs facilitate invasions into landscapes? BioScience 55: 518–525.CrossRefGoogle Scholar
  20. Hebert, P. D. N., A. Cywinska, S. L. Ball & J. R. DeWaard, 2003a. Biological identifications through DNA barcodes. Proceedings of the Royal Society B Biological Sciences 270: 313–321.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Hebert, P. D. N., S. Ratnasingham & J. R. DeWaard, 2003b. Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proceedings of the Royal Society B Biological Sciences 270: 96–99.CrossRefGoogle Scholar
  22. Hubert, N., B. Espiau, C. Meyer & S. Planes, 2015. Identifying the ichthyoplankton of a coral reef using DNA barcodes. Molecular Ecology Resources 15: 57–67.CrossRefPubMedGoogle Scholar
  23. Júlio Júnior, H. F., C. Dei Tós, A. A. Agostinho & C. S. Pavanelli, 2009. A massive invasion of fish species after eliminating a natural barrier in the upper Rio Paraná basin. Neotropical Ichthyology 7: 709–718.CrossRefGoogle Scholar
  24. Kimura, M., 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16(111): 120.Google Scholar
  25. Ko, H., Y. Wang, T. Chiu, M. Lee, M. Leu, K. Chang, W. Chen & K. Shao, 2013. Evaluating the accuracy of morphological identification of larval fishes by applying DNA barcoding. PLoS ONE 8: 3–9.CrossRefGoogle Scholar
  26. Langeani, F., R. M. C. Castro, O. T. Oyakawa, O. A. Shibatta, C. S. Pavanelli & L. Casatti, 2007. Diversidade da ictiofauna do Alto Rio Paraná: composição atual e perspectivas futuras. Biota Neotropica 5: 75–78.Google Scholar
  27. Lewis, L. A., D. E. Richardson, E. V. Zakharov & R. Hanner, 2016. Integrating DNA barcoding of fish eggs into ichthyoplankton monitoring programs. Fishery Bulletin 114(2): 153–165.CrossRefGoogle Scholar
  28. Lockwood, J. L., M. F. Hoopes & M. P. Marchetti, 2007. Invasion Ecology. Blackwell Publishing, Oxford.Google Scholar
  29. Lowe, M. R., W. Wu, M. S. Peterson, N. J. Brown-Peterson, W. T. Slack & P. J. Schofield, 2012. Survival, growth and reproduction of nonnative Nile Tilapia II: fundamental niche projections and invasion potential in the Northern Gulf of Mexico. PLoS ONE 7: e41580.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Nakatani, K., A. A. Agostinho, G. Baumgartner, A. Bialetzki, P. V. Sanches, M. C. Makrakis & C. S. Pavanelli, 2001. Ovos e larvas de peixes de água doce: desenvolvimento e manual de identificação. Eduem, Maringá.Google Scholar
  31. Orsi, M. L., 2010. Estratégias reprodutivas de peixes da região média-baixa do Rio Paranapanema, reservatório de Capivara. Editora Blucher, São Paulo.Google Scholar
  32. Ortega, J. C. G., H. F. Júlio Jr., L. C. Gomes & A. A. Agostinho, 2015. Fish farming as the main driver of fish introductions in Neotropical reservoirs. Hydrobiologia 746: 147–158.CrossRefGoogle Scholar
  33. Pegg, G. G., B. Sinclair, L. Briskey & W. J. Aspden, 2006. MtDNA barcode identification of fish larvae in the southern Great Barrier Reef, Australia. Scientia Marina 70: 7–12.CrossRefGoogle Scholar
  34. Pereira, L. H., R. Hanner, F. Foresti & C. Oliveira, 2013. Can DNA barcoding accurately discriminate megadiverse Neotropical freshwater fish fauna? BMC genetics 14: 20–34.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Ratnasingham, S. & P. D. N. Hebert, 2007. BOLD: The Barcode of Life Data System ( Molecular Ecology Notes 7: 355–364.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Ratnasingham, S. & P. D. Hebert, 2013. A DNA-based registry for all animal species: the barcode index number (BIN) system. PLoS ONE 8(7): e66213.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Reis, R. E., J. S. Albert, F. Di Dario, M. M. Mincarone, P. Petry & L. A. Rocha, 2016. Fish biodiversity and conservation in South America. Journal of Fish Biology 89: 12–47.CrossRefPubMedGoogle Scholar
  38. Reynalte-Tataje, D. A., A. P. O. Nuñer, M. C. Nunes, V. Garcia, C. A. Lopes & E. Zaniboni-Filho, 2012. Spawning of migratory fish species between two reservoirs of the upper Uruguay River, Brazil. Neotropical Ichthyology 10: 829–835.CrossRefGoogle Scholar
  39. Simberloff, D., 2009. We can eliminate invasions or live with them. Successful management projects. Biological Invasions 11: 149–157.CrossRefGoogle Scholar
  40. Tamura, K., G. Stecher, D. Peterson, A. Filipski & S. Kumar, 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution 30: 2725–2729.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Togawa, R. C. & M. M. Brigido, 2003. PHPH: web based tool for simple electropherogram quality analysis. In 1st International Conference on Bioinformatics and Computational Biology – IcoBiCoBi. Ribeirão Preto, Brasil: 1. Available at:
  42. Valdez-Moreno, M., N. V. Ivanova, M. Elias-Gutiérrez, S. C. Balderas & P. D. N. Hebert, 2009. Probing diversity in freshwater fishes from Mexico and Guatemala with DNA barcodes. Journal of Fish Biology 74: 377–402.CrossRefPubMedGoogle Scholar
  43. Valdez-Moreno, M., L. Vásquez-Yeomans, M. Elías-Gutiérrez, N. V. Ivanova & P. D. N. Hebert, 2010. Using DNA barcodes to connect adults and early life stages of marine fishes from the Yucatan Peninsula, Mexico: potential in fisheries management. Marine and Freshwater Research 61: 665–671.CrossRefGoogle Scholar
  44. Vitule, J. R. S., A. A. Agostinho, V. M. Azevedo-Santos, V. S. Daga, W. R. T. Darwall, D. B. Fitzgerald, F. A. Frehse, D. J. Hoeinghaus, D. P. Lima-Junior, A. L. B. Magalhães, M. L. Orsi, A. A. Padial, F. M. Pelicice, M. Petrere Jr., P. S. Pompeu & K. O. Winemiller, 2017. We need better understanding about functional diversity and vulnerability of tropical freshwater fishes. Biodiversity and Conservation 26: 757–762.CrossRefGoogle Scholar
  45. Ward, R. D., T. S. Zemlak, B. H. Innes, P. R. Last & P. D. Hebert, 2005. DNA barcoding Australia’s fish species. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 360: 1847–1857.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  • Fernanda S. Almeida
    • 1
  • Wilson Frantine-Silva
    • 1
  • Same C. Lima
    • 1
  • Diego A. Z. Garcia
    • 2
  • Mário L. Orsi
    • 2
  1. 1.Departamento de Biologia Geral, Centro de Ciências BiológicasUniversidade Estadual de LondrinaLondrinaBrazil
  2. 2.Departamento de Biologia Animal e Vegetal, Centro de Ciências BiológicasUniversidade Estadual de LondrinaLondrinaBrazil

Personalised recommendations