Skip to main content

Advertisement

Log in

Habitat supply for Yellow Perch (Actinopterygii, Percidae) varies with space, time, and life stage in Lake Erie

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Exploring species-environment relationships to identify essential habitat areas is recognized as an effective way for resource conservation and management. Because of ecological and economic importance of Yellow Perch (Perca flavescens) in Lake Erie, it is essential to develop appropriate habitat models to analyze habitat supply of this species. Empirical species-environment models for two age-groups (juveniles and adults) at two depth strata were developed based on a long-term (27 years) gillnet survey data. Models incorporated interactive terms indicate a high degree of prediction accuracy and satisfied the assumption of residual independence. As a benthivorous species, high-quality habitat is mainly distributed in the bottom waters. Suitable habitat for adults is also found in the mid-waters in the central and east basins. Weighted suitability index per unit area differs significantly among years, basins, and vertical strata. Currently, quota allocation among jurisdictions is determined by using GIS applications of jurisdictional surface area of waters within each management unit. The outputs from our study can be used to revise the current quota allocation schemes and habitat-based quota allocation protocol will provide more scientific and rational total allowable catch for each jurisdiction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Akaike, H., 1973. Information theory and an extension of the maximum likelihood principle. In Petrov, B.N. & F. Csaki (eds.), Proceedings of the 2nd International Symposium on Information Theory. Hungarian Academy of Sciences, Budapest: 268–281.

  • Ali, M. A., R. A. Ryder & M. Anctil, 1977. Photoreceptors and visual pigments related to behavioral responses and preferred habitats of perches (Perca spp.) and pike perches (Stizostedion spp.). Canadian Journal of Fisheries and Aquatic Sciences 34: 1475–1480.

    Google Scholar 

  • Arend, K. K., D. Beletsky, J. V. Depinto, S. A. Ludsin, J. J. Roberts, D. K. Rucinski, D. Scavia, D. J. Schwab & T. O. HÖÖK, 2011. Seasonal and interannual effects of hypoxia on fish habitat quality in central Lake Erie. Freshwater Biology 56: 366–383.

    Article  Google Scholar 

  • Bacheler, N. M., T. J. Paoli & G. M. Schacht, 2011. Controls on abundance and distribution of Yellow Perch: predator, water quality, and density-dependent effects. Transactions of the American Fisheries Society 140: 989–1000.

    Article  Google Scholar 

  • Berger, A. M., M. L. Jones & Y. Zhao, 2012. Improving fishery-independent indices of abundance for a migratory walleye population. Journal of Great Lakes Research 38: 755–765.

    Article  Google Scholar 

  • Bivand, R. S., E. J. Pebesma & V. Gómezrubio, 2008. Applied Spatial Data Analysis with R. Springer, New York.

    Google Scholar 

  • Bivand, R. & G. Piras, 2015. Comparing implementations of estimation methods for spatial econometrics. Journal of Statistical Software 63: 1–36.

    Google Scholar 

  • Bremigan, M. T., J. M. Dettmers & A. L. Mahan, 2003. Zooplankton selectivity by larval Yellow Perch in Green Bay, Lake Michigan. Journal of Great Lakes Research 29: 501–510.

    Article  Google Scholar 

  • Chang, J. H., Y. Chen, D. Holland & J. Grabowski, 2010. Estimating spatial distribution of American lobster Homarus americanus using habitat variables. Marine Ecology Progress Series 420: 145–156.

    Article  Google Scholar 

  • Chang, Y. J., C. L. Sun, Y. Chen, S. Z. Yeh, G. Dinardo & N. J. Su, 2013. Modelling the impacts of environmental variation on the habitat suitability of swordfish, Xiphias gladius, in the equatorial Atlantic Ocean. ICES Journal of Marine Science 70: 1000–1012.

    Article  Google Scholar 

  • Diniz-Filho, J. A. F., L. M. Bini & B. A. Hawkins, 2003. Spatial autocorrelation and red herrings in geographical ecology. Global Ecology & Biogeography 12: 53–64.

    Article  Google Scholar 

  • Doll, J. C., N. D. Thomas & T. E. Lauer, 2014. Gill net selectivity of yellow perch. Journal of Freshwater Ecology 29: 279–288.

    Article  Google Scholar 

  • Enders, E. C., D. Boisclair, P. Boily & P. Magnan, 2006. Effect of body mass and water temperature on the standard metabolic rate of juvenile Yellow Perch, Perca flavescens (Mitchill). Environmental Biology of Fishes 76: 399–407.

    Article  Google Scholar 

  • Farmer, T. M., E. A. Marschall, K. Dabrowski & S. A. Ludsin, 2015. Short winters threaten temperate fish populations. Nature Communications 6: 1–10.

    Article  Google Scholar 

  • Furey, N. B. & J. R. Rooker, 2013. Spatial and temporal shifts in suitable habitat of juvenile southern flounder (Paralichthys lethostigma). Journal of Sea Research 76: 161–169.

    Article  Google Scholar 

  • Guisan, A. & E. Zimmermann, 2000. Predictive habitat distribution models in ecology. Ecological Modelling 135: 147–186.

    Article  Google Scholar 

  • Hastie, T. & R. Tibshirani, 1990. Generalized Additive Models. Chapman & Hall/CRC Press, Boca Raton, FL.

    Google Scholar 

  • Hartman, K. & F. Margraf, 1993. Evidence of predatory control of Yellow Perch (Perca flavescens) recruitment in Lake Erie, USA. Journal of Fish Biology 43: 109–119.

    Article  Google Scholar 

  • Henderson, B. A. & S. J. Nepszy, 1988. Recruitment of Yellow Perch (Perca flavescens) affected by stock size and water temperature in Lakes Erie and St. Clair, 1965-85. Journal of Great Lakes Research 14: 205–215.

    Article  Google Scholar 

  • Jensen, O. P., R. Seppelt, T. J. Miller & L. J. Bauer, 2005. Winter distribution of blue crab Callinectes sapidus in Chesapeake Bay: application and cross-validation of a two-stage generalized additive model. Marine Ecology Progress Series 299: 239–255.

    Article  Google Scholar 

  • Jiménez, V. A. & J. M. Lobo, 2007. Threshold criteria for conversion of probability of species presence to either-or presence-absence. Acta Oecologica 31: 361–369.

    Article  Google Scholar 

  • Koonce, J. F., W. N. Busch & T. Czapla, 1996. Restoration of Lake Erie: contribution of water quality and natural resource management. Canadian Journal of Fisheries and Aquatic Sciences 53: 105–112.

    Article  Google Scholar 

  • Kraus, R. T., C. T. Knight & T. M. Farmer, 2015. Dynamic hypoxic zones in Lake Erie compress fish habitat, altering vulnerability to fishing gears. Canadian Journal of Fisheries and Aquatic Sciences 72: 797–806.

    Article  CAS  Google Scholar 

  • Krieger, D. A., J. W. Terrell & P. C. Nelson, 1984. Habitat suitability information: Yellow perch. U. S. Fish and Wildlife Service, Washington, DC.

    Google Scholar 

  • Kűhn, I., 2007. Incorporating spatial autocorrelation may invert observed patterns. Diversity & Distributions 13: 66–69.

    Google Scholar 

  • McCauley, R. W. & L. A. A. Read, 1973. Temperature selection by juvenile and adult yellow perch (Perca flavescens) acclimated to 24°C. Journal of the Fisheries Research Board of Canada 30: 1253–1255.

    Article  Google Scholar 

  • Makarewicz, J. C. & P. Bertram, 1991. Evidence for the recovery of the Lake Erie ecosystem. Bioscience 41: 216–223.

    Article  Google Scholar 

  • Manning, N. F., C. M. Mayer, J. M. Bossenbroek & J. T. Tyson, 2013. Effects of water clarity on the length and abundance of age-0 Yellow Perch in the Western Basin of Lake Erie. Journal of Great Lakes Research 39: 295–302.

    Article  Google Scholar 

  • Manning, N. F., J. M. Bossenbroek, C. M. Mayer, D. B. Bunnell, J. T. Tyson, L. G. Rudstam & J. R. Jackson, 2014. Modeling turbidity type and intensity effects on the growth and starvation mortality of age-0 Yellow Perch. Canadian Journal of Fisheries and Aquatic Sciences 71: 1544–1553.

    Article  Google Scholar 

  • Moran, P. A. P., 1950. Notes on continuous stochastic phenomena. Biometrika 37: 17–23.

    Article  CAS  PubMed  Google Scholar 

  • Pandit, S. N., Y. M. Zhao, J. J. H. Ciborowski, A. M. Gorman & C. T. Knight, 2013. Suitable habitat model for walleye (Sander vitreus) in Lake Erie: implications for inter-jurisdictional harvest quota allocations. Journal of Great Lakes Research 39: 591–601.

    Article  Google Scholar 

  • Pape, O. L., J. Delavenne & S. Vaz, 2014. Quantitative mapping of fish habitat: a useful tool to design spatialized management measures and marine protected area with fishery objectives. Ocean & Coastal Management 87: 8–19.

    Article  Google Scholar 

  • Pebesma, E. J., 2004. Multivariable geostatistics in S: the gstat package. Computers & Geosciences 30: 683–691.

    Article  Google Scholar 

  • Phillips, S. J., R. P. Anderson & R. E. Schapire, 2006. Maximum entropy modeling of species geographic distributions. Ecology Modelling 190: 231–259.

    Article  Google Scholar 

  • Power, M. & M. R. Heuvel, 1999. Age-0 Yellow Perch growth and its relationship to temperature. Transactions of the American Fisheries Society 128: 687–700.

    Article  Google Scholar 

  • R Development Core Team, 2014. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna.

    Google Scholar 

  • Roberts, J. J., T. O. Höök, S. A. Ludsin, S. A. Pothoven, H. A. Vanderploeg & S. B. Brandt, 2009. Effects of hypolimnetic hypoxia on foraging and distributions of Lake Erie Yellow Perch. Journal of Experimental Marine Biology & Ecology 381: S132–S142.

    Article  Google Scholar 

  • Roberts, J. J., P. A. Grecay, S. A. Ludsin, S. A. Pothoven, H. A. Vanderploeg & T. O. Höök, 2012. Evidence of hypoxic foraging forays by Yellow Perch (Perca flavescens) and potential consequences for prey consumption. Freshwater Biology 57: 922–937.

    Article  Google Scholar 

  • Robin, X., N. Turck, A. Hainard, N. Tiberti, F. Lisacek, J. C. Sanchez & M. Müller, 2011. pROC: an open-source package for R and S + to analyze and compare ROC curves. BMC Bioinformatics 12: 77.

    Article  PubMed  PubMed Central  Google Scholar 

  • Scavia, D., J. D. Allan, K. K. Arend, S. Bartell, D. Beletsky, N. S. Bosch, S. B. Brandt, R. D. Briland, I. Daloglu, J. V. DePinto, D. M. Dolan, M. A. Evans, T. M. Farmer, D. Goto, H. Han, T. Hook, R. Knight, S. A. Ludsin, D. Mason, A. M. Michalak, R. P. Richards, J. J. Roberts, D. K. Rucinski, E. Rutherford, D. J. Schwab, T. M. Sesterhenn, H. Zhang & Y. Zhou, 2014. Assessing and addressing the re-eutrophication of Lake Erie: central basin hypoxia. Journal of Great Lakes Research 40: 226–246.

    Article  CAS  Google Scholar 

  • Scheffé, H., 1959. The Analysis of Variance. Wiley, New York.

    Google Scholar 

  • Scott, W. B. & E. J. Crossman, 1973. Freshwater fishes of Canada. Bulletin Fisheries Research Board of Canada 184: 1–966.

    Google Scholar 

  • Sing, T., O. Sander, N. Beerenwinkel & T. Lengauer, 2005. ROCR: visualizing classifier performance in R. Bioinformatics 21: 3940–3941.

    Article  CAS  PubMed  Google Scholar 

  • Tian, S. Q., X. J. Chen, Y. Chen, L. X. Xu & X. J. Dai, 2009. Evaluating habitat suitability indices derived from CPUE and fishing effort data for Ommatrephes bratramii in the Northwestern Pacific Ocean. Fisheries Research 95: 181–188.

    Article  Google Scholar 

  • Thuiller, W., C. H. Albert, A. Dubuis, C. Randin & A. Guisan, 2010. Variation in habitat suitability does not always relate to variation in species’ plant functional traits. Biology Letters 6: 120–123.

    Article  PubMed  Google Scholar 

  • Valavanis, V. D., G. J. Pierce, A. F. Zuur, A. Palialexis, A. Saveliev, I. Katara, C. Vinagre, V. Fonseca, H. Cabral & M. J. Costa, 2006. Habitat suitability index models for the juvenile soles, Solea solea and Solea senegalensis, in the Tagus estuary: defining variables for species management. Fisheries Research 82: 140–149.

    Article  Google Scholar 

  • Wang, J., 2008. Modelling of essential fish habitat based on remote sensing, spatial analysis and GIS. Hydrobiologia 612: 5–20.

    Article  Google Scholar 

  • Wellington, C. G., C. M. Mayer, J. M. Bossenbroek & N. A. Stroh, 2010. Effects of turbidity and prey density on the foraging success of age-0 year Yellow Perch Perca flavescens. Journal of Fish Biology 76: 1729–1741.

    Article  CAS  PubMed  Google Scholar 

  • Wood, S. N., 2006. Generalized additive models: an introduction with R. CRC/Chapman & Hall, Boca Raton.

    Google Scholar 

  • Wood, S. N., 2008. Fast stable direct fitting and smoothness selection for generalized additive models. Journal of the Royal Statistical Society 70: 495–518.

    Article  Google Scholar 

  • Xue, Y., L. Guan, K. Tanaka, Z. Li, Y. Chen & Y. Ren, 2017. Evaluating effects of rescaling and weighting data on habitat suitability modeling. Fisheries Research 188: 84–94.

    Article  Google Scholar 

  • Yi, Y. J., J. Sun, S. H. Zhang & Z. F. Yang, 2016. Assessment of Chinese sturgeon habitat suitability in the Yangtze River (China): comparison of generalized additive model, data-driven fuzzy logic model, and preference curve model. Journal of Hydrology 536: 447–456.

    Article  Google Scholar 

  • YPTG (Yellow Perch Task Group), 2006. Report of the Lake Erie Yellow Perch Task Group. Wheatley, Ontario.

    Google Scholar 

  • YPTG (Yellow Perch Task Group), 2015. Report of the Lake Erie Yellow Perch Task Group. Wheatley, Ontario.

    Google Scholar 

  • Yu, H., Y. Jiao & A. Winter, 2011. Catch-rate standardization for Yellow Perch in Lake Erie: a comparison of the spatial generalized linear model and the generalized additive model. Transactions of the American Fisheries Society 140: 905–918.

    Article  Google Scholar 

  • Yu, W., Q. Yi, X. Chen & Y. Chen, 2016. Modelling the effects of climate variability on habitat suitability of jumbo flying squid, Dosidicus gigas, in the Southeast Pacific Ocean off Peru. ICES Journal of Marine Science 73: 239–249.

    Article  Google Scholar 

Download references

Acknowledgements

This project was supported in part by a grant “Integration of spatial stock structure and multiple stocks into stock assessment for Yellow Perch in Lake Erie” to Y. Jiao. We thank the Ontario Commercial Fisheries Association and Great Lakes Fishery Commission for providing data to us. C. Liu is supported by a fellowship from Ocean University of China while working at Virginia Tech as a Visiting Scholar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanli Tang.

Additional information

Handling editor: Luigi Naselli-Flores

Electronic supplementary material

Below is the link to the electronic supplementary material.

10750_2017_3440_MOESM1_ESM.tif

Supplementary material 1 (TIFF 386 kb) Appendix 1. The plot of (a) sample magnitude against year and the boxplots of (b) gear temperature, (c) gear depth, (d) water clarity, (e) dissolved oxygen and (f) catch per unit effort (CPUE) of adults against year based on the gillnet survey data in the bottom waters

10750_2017_3440_MOESM2_ESM.tif

Supplementary material 2 (TIFF 6261 kb) Appendix 2. The plot of (a) sample magnitude against year and the boxplots of (b) gear temperature, (c) gear depth, (d) water clarity and (e) dissolved oxygen against year based on the gillnet survey data in the mid-waters

10750_2017_3440_MOESM3_ESM.tif

Supplementary material 3 (TIFF 499 kb) Appendix 3. Spatial distribution of (a) water temperature, (b) gear depth, (c) water clarity, (d) dissolved oxygen and (e) CPUE of adults in 2015 based on the gillnet survey data in the bottom waters

10750_2017_3440_MOESM4_ESM.tif

Supplementary material 4 (TIFF 390 kb) Appendix 4. Spatial distribution of (a) water temperature, (b) gear depth, (c) water clarity and (d) dissolved oxygen in 2015 based on the gillnet survey data in the mid-waters

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Jiao, Y., Reid, K.B. et al. Habitat supply for Yellow Perch (Actinopterygii, Percidae) varies with space, time, and life stage in Lake Erie. Hydrobiologia 808, 371–386 (2018). https://doi.org/10.1007/s10750-017-3440-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-017-3440-8

Keywords

Navigation