Skip to main content
Log in

Evolutionary responses of aquatic macroinvertebrates to two contrasting flow regimes

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Natural disturbances are agents of natural selection that drive multiple biological adaptations along evolutionary time. Frequent, high magnitude disturbances are expected to select for morphological and behavioral traits to resist or to avoid them. In contrast, predictable and seasonal disturbances are expected to select for synchronized life cycles to avoid unfavorable periods. We assessed the effect of flood disturbances on aquatic macroinvertebrates in two rivers with contrasting flow regimes: the Gila (USA) with seasonal floods and droughts, and the Thur (Switzerland) with a high frequency of aseasonal floods. Macroinvertebrates were analyzed based on 46 biological trait categories classified into morphological, life-cycle synchronization, and behavioral strategies. Flood effects on diversity and composition were much clearer for the Gila than for the Thur. Overall, biological adaptations were related to the flood regime of each river. Morphological adaptations to resist or avoid floods prevailed under frequent and aseasonal disturbances (the Thur), whereas life-cycle synchronization and behavioral adaptations were associated with highly seasonal, predictable, and low-frequency disturbances (the Gila). Given that forecasted future flow regimes differ between regions, our results suggest that the effects of future flow regime alterations will ultimately depend on the adaptation strategies to current flow regimes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Acuña, V. & C. N. Dahm, 2007. Impact of monsoonal rains on spatial scaling patterns in water chemistry of a semiarid river network. Journal of Geophysical Research 112: G04009.

    Article  Google Scholar 

  • Bae, M.-J. & Y.-S. Park, 2017. Responses of the functional diversity of benthic macroinvertebrates to floods and droughts in small streams with different flow permanence. Inland Waters 6: 461–475.

    Article  Google Scholar 

  • Bêche, L. A., E. P. McElravy & V. H. Resh, 2006. Long-term seasonal variation in the biological traits of benthic-macroinvertebrates in two Mediterranean-climate streams in California, U.S.A. Freshwater Biology 51: 56–75.

    Article  Google Scholar 

  • Bonada, N. & S. Dolédec, 2011. Do mediterranean genera not included in Tachet et al. 2002 have mediterranean trait characteristics? Limnetica 30: 129–142.

    Google Scholar 

  • Bonada, N. & V. H. Resh, 2013. Mediterranean-climate streams and rivers: geographically separated but ecologically comparable freshwater systems. Hydrobiologia 719: 1–29.

    Article  Google Scholar 

  • Bonada, N., S. Dolédec & B. Statzner, 2007. Taxonomic and biological trait differences of stream macroinvertebrate communities between mediterranean and temperate regions: implications for future climatic scenarios. Global Change Biology 13: 1658–1671.

    Article  Google Scholar 

  • Burgess, S. C. & D. J. Marshall, 2014. Adaptive parental effects: the importance of estimating environmental predictability and offspring fitness appropriately. Oikos 123: 769–776.

    Article  Google Scholar 

  • Calapez, A. R., C. L. Elias, S. F. P. Almeida & M. J. Feio, 2014. Extreme drought effects and recovery patterns in benthic communities of temperate streams. Limnetica 33: 281–296.

    Google Scholar 

  • Champely, S. & D. Chessel, 2002. Measuring biological diversity using Euclidean metrics. Environmental and Ecological Statistics 9: 167–177.

    Article  Google Scholar 

  • Chessel, D., A. Dufour & J. Thioulouse, 2004. The ade4 package-I- One-table methods. R News 4: 5–10.

    Google Scholar 

  • Chevenet, F., S. Dolédec & D. Chessel, 1994. A fuzzy coding approach for the analysis of long-term ecological data. Freshwater Biology 31: 295–309.

    Article  Google Scholar 

  • Cleveland, W. S., 1979. Robust locally weighted regression and smoothing scatterplots. Journal of the American Statistical Association 74: 829–836.

    Article  Google Scholar 

  • Colwell, R. K., 1974. Predictability, constancy, and contingency of periodic phenomena. Ecology 55: 1148–1153.

    Article  Google Scholar 

  • Cook, B. I. & R. Seager, 2013. The response of the North American Monsoon to increased greenhouse gas forcing. Journal of Geophysical Research: Atmospheres 118: 1690–1699.

    Google Scholar 

  • Death, R. G., 2008. Effects of floods on aquatic invertebrates communities. In Lancaster, J. & R. A. Briers (eds.), Aquatic Insects: Challenges to Populations. CAB International, Wallingford, UK: 103–121.

    Chapter  Google Scholar 

  • Feeley, H. B., S. Davies, M. Bruen, S. Blacklocke & M. Kelly-Quinn, 2012. The impact of a catastrophic storm event on benthic macroinvertebrate communities in upland headwater streams and potential implications for ecological diversity and assessment of ecological status. Journal of Limnology 71: 299–308.

    Article  Google Scholar 

  • Filipe, A. F., J. E. Lawrence & N. Bonada, 2013. Vulnerability of stream biota to climate change in mediterranean climate regions: a synthesis of ecological responses and conservation challenges. Hydrobiologia 719: 331–351.

    Google Scholar 

  • Fleituch, T., 2003. Structure and functional organization of benthic invertebrates in a regulated stream. International Review of Hydrobiology 88: 332–344.

    Article  Google Scholar 

  • Gasith, A. & V. H. Resh, 1999. Streams in Mediterranean climate regions: abiotic influences and biotic responses to predictable seasonal events. Annual Review of Ecology and Systematics 30: 51–81.

    Article  Google Scholar 

  • Gutzler, D. S., 2013. Regional climatic considerations for borderlands sustainability. Ecosphere 4: 1–12.

    Article  Google Scholar 

  • Heino, J., R. Virkkala & H. Toivonen, 2009. Climate change and freshwater biodiversity: detected patterns, future trends and adaptation in northern regions. Biological Reviews 84: 39–54.

    Article  PubMed  Google Scholar 

  • Hershkovitz, Y. & A. Gasith, 2013. Resistance, resilience, and community dynamics in mediterranean-climate streams. Hydrobiologia 719: 59–75.

    Article  Google Scholar 

  • Imhof, A., 1994. Habitatsansprüche und Verhalten von Perla grandis (Rambur) (Plecoptera: Perlidae) und anderen räuberischen Steinfliegenlarven. PhD thesis, ETH (Eidgenössische Technische Hochschule), Zurich.

  • Lake, P. S., 2000. Disturbance, patchiness, and diversity in streams. Journal of the North American Benthological Society 19: 573–592.

    Article  Google Scholar 

  • Lake, P. S., 2011. Drought and aquatic ecosystems: effects and responses. Wiley-Blackwell, West Sussex, UK.

    Book  Google Scholar 

  • Lepori, F. & N. Hjerdt, 2006. Disturbance and aquatic biodiversity: reconciling contrasting views. BioScience 56: 809–818.

    Article  Google Scholar 

  • Lytle, D. A., 2001. Disturbance regimes and life-history evolution. The American Naturalist 157: 525–536.

    CAS  PubMed  Google Scholar 

  • Lytle, D. A., 2002. Flash floods and aquatic insect life-history evolution: evaluation of multiple models. Ecology 83: 370–385.

    Article  Google Scholar 

  • Lytle, D. A. & N. L. Poff, 2004. Adaptation to natural flow regimes. Trends in Ecology and Evolution 19: 94–100.

    Article  PubMed  Google Scholar 

  • Lytle, D. A., M. T. Bogan & D. S. Finn, 2008. Evolution of aquatic insect behaviours across a gradient of disturbance predictability. Proceedings of the Royal Society B 275: 453–462.

    Article  PubMed  Google Scholar 

  • McCluney, K. E., N. L. Poff, M. A. Palmer, J. H. Thorp, G. C. Poole, B. S. Williams, M. R. Williams & J. S. Baron, 2014. Riverine macrosystems ecology: sensitivity, resistance, and resilience of whole river basins with human alterations. The Ecological Society of America 12: 48–58.

    Google Scholar 

  • Merritt, R. W. & K. W. Cummins, 1996. An introduction to the aquatic insects of North America, 3rd ed. Kendall/Hunt Publishing Company, Dubuque, IA.

    Google Scholar 

  • Molles, M. C. & C. N. Dahm, 1990. A perspective on El Niño and La Niña: global implications for stream ecology. Journal of the North American Benthological Society 9: 68–76.

    Article  Google Scholar 

  • Oksanen, J., G. Blanchet, R. Kindt, P. Legendre, P. R. Minchin, R. B. O’Hara, G. L. Simpson, P. Solymos, M. H. H. Stevens & H. Wagner, 2013. vegan: Community Ecology Package. R package version 2.0-8. https://CRAN.R-project.org/package=vegan.

  • Piniewski, M., C. Prudhomme, M. C. Acreman, L. Tylec, P. Oglecki & T. Okruszko, 2017. Responses of fish and invertebrates to floods and drought in Europe. Ecohydrology 10: e1793.

    Article  Google Scholar 

  • Poff, N. L. & J. V. Ward, 1989. Implications of streamflow variability and predictability for lotic community structure: a regional analysis of streamflow patterns. Canadian Journal of Fisheries and Aquatic Sciences 46: 1805–1818.

    Article  Google Scholar 

  • Poff, N. L., J. D. Allan, M. B. Bain, J. R. Karr, K. L. Prestegaard, B. D. Richter, R. E. Sparks & J. C. Stromberg, 1997. The natural flow regime: a paradigm for river conservation and restoration. BioScience 47: 769–784.

    Article  Google Scholar 

  • Poff, N. L., J. D. Olden, N. K. M. Vieira, D. S. Finn, M. P. Simmons & B. C. Kondratieff, 2006. Functional trait niches of North American lotic insects: traits-based ecological applications in light of phylogenetic relationships. Journal of the North American Benthological Society 25: 730–755.

    Article  Google Scholar 

  • R Core Team, 2013. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.

    Google Scholar 

  • Richter, B. D., J. V. Baumgartner, J. Powell & D. P. Braun, 1996. A method for assessing hydrologic alteration within ecosystems. Conservation Biology 10: 1163–1174.

    Article  Google Scholar 

  • Robinson, C., U. Uehlinger & M. Monaghan, 2003. Effects of a multiyear experimental flood regime on macroinvertebrates downstream of a reservoir. Aquatic Sciences 65: 210–222.

    Article  Google Scholar 

  • Robinson, C. T., S. Aebischer & U. Uehlinger, 2004. Immediate and habitat-specific responses of macroinvertebrates to sequential, experimental floods. Journal of the North American Benthological Society 23(4): 853–867.

    Article  Google Scholar 

  • Rolls, R. J. & A. H. Arthington, 2014. How do low magnitudes of hydrologic alteration impact riverine fish populations and assemblage characteristics? Ecological Indicators 39: 179–188.

    Article  Google Scholar 

  • Schleuter, D., M. Daufresne, F. Massol & C. Argillier, 2010. A user’s guide to functional diversity indices. Ecological Monographs 80: 469–484.

    Article  Google Scholar 

  • Schneider, S. C. & Z. Petrin, 2017. Effects of flow regime on benthic algae and macroinvertebrates—A comparison between regulated and unregulated rivers. Science of the Total Environment 579: 1059–1072.

    Article  CAS  PubMed  Google Scholar 

  • Schneider, C., C. L. R. Laizé, M. C. Acreman & M. Flörke, 2012. How will climate change modify river flow regimes in Europe? Hydrology and Earth System Sciences 9: 9193–9238.

    Article  Google Scholar 

  • Seager, R., M. Ting, I. Held, Y. Kushnir, J. Lu, G. Vecchi, H.-P. Huang, N. Harnik, A. Leetmaa, N.-C. Lau, C. Li, J. Velez & N. Naik, 2008. Model projections of an imminent transition to a more arid climate in southwestern North America. Science 316: 1181–1184.

    Article  Google Scholar 

  • Skelly, D. K., L. N. Joseph, H. P. Possingham, L. K. Freidenburg, T. J. Farrugia, M. T. Kinnison & A. P. Hendry, 2007. Evolutionary responses to climate change. Conservation Biology 21: 1353–1355.

    Article  PubMed  Google Scholar 

  • Statzner, B., N. Bonada & S. Dolédec, 2007. Conservation of taxonomic and biological trait diversity of European stream macroinvertebrate communities: a case for a collective public database. Biodiversity and Conservation 16: 3609–3632.

    Article  Google Scholar 

  • Tachet, H., P. Richoux, M. Bournaud & P. Usseglio-Polatera, 2010. Invertébrés d’Eau Douce (2nd corrected impression). CNRS éditions, Paris.

    Google Scholar 

  • Tomanova, S. & P. Usseglio-Polatera, 2007. Patterns of benthic community traits in neotropical streams: relationship to mesoscale spatial variability. Fundamental and Applied Limnology 170(3): 243–255.

    Article  Google Scholar 

  • Uehlinger, U., 2000. Resistance and resilience of ecosystem metabolism in a flood-prone river system. Freshwater Biology 45: 319–332.

    Article  Google Scholar 

  • Verberk, W. C. E. P., C. G. E. van Noordwijk & A. Hildrew, 2013. Delivering on a promise: integrating species traits to transform descriptive community ecology into a predictive science. Freshwater Science 32: 531–547.

    Article  Google Scholar 

  • Vörösmarty, C. J., P. B. McIntyre, M. O. Gessner, D. Dudgeon, A. Prusevich, P. Green, S. Glidden, S. E. Bunn, C. A. Sullivan, C. R. Liermannm & P. M. Davies, 2010. Global threats to human water security and river biodiversity. Nature 467: 555–561.

    Article  PubMed  Google Scholar 

  • Wang, X. F., 2010. fANCOVA: Nonparametric Analysis of Covariance. R package version 0.5-1. https://CRAN.R-project.org/package=fANCOVA.

  • Woodward, G., N. Bonada, H. B. Feeley & P. S. Giller, 2015. Resilience of a stream community to extreme climatic events and long-term recovery from a catastrophic flood. Freshwater Biology 60: 2497–2510.

    Article  Google Scholar 

  • Woodward, G., N. Bonada, L. E. Brown, R. G. Death, I. Durance, C. Gray, S. Hladyz, M. E. Ledger, A. M. Milner, S. J. Ormerod, R. M. Thompson & S. Pawar, 2016. The effects of climatic fluctuations and extreme events on running water ecosystems. Philosophical Transactions of the Royal Society B 371: 20150274.

    Article  Google Scholar 

Download references

Acknowledgements

John Craig, Richard Illi, Sergi Sabater, Martha Schumann, Dave Van Horn, and Andreas Wolf (in alphabetical order) assisted in the field or in the laboratory. The research was funded by a MEC-Fulbright fellowship of the Spanish Science and Education Ministry, by a Marie Curie Intra-European Fellowship within the 6th European Community Framework Programme, the National Science Foundation (IGERT Freshwater Sciences Interdisciplinary Doctoral Program, DGE 9972810), the University of New Mexico, the Swiss Federal Institute of Aquatic Science and Technology (Eawag), and The Nature Conservancy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Núria Bonada.

Additional information

Handling editor: Marcelo S. Moretti

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 886 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de la Fuente, M., Bonada, N., Bêche, L. et al. Evolutionary responses of aquatic macroinvertebrates to two contrasting flow regimes. Hydrobiologia 808, 353–370 (2018). https://doi.org/10.1007/s10750-017-3437-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-017-3437-3

Keywords

Navigation