Skip to main content
Log in

The contributions of biological control to reduced plant size and biomass of water hyacinth populations

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Water hyacinth is invasive in many countries, where it reduces aquatic biodiversity and limits water resource utilisation. Biological control of water hyacinth has been successful in South Africa, but has suffered from a lack of empirical data to prove causation. Insect exclusion trials were conducted to quantify the contribution of Neochetina eichhorniae and N. bruchi to the integrated control of water hyacinth on the Nseleni River, South Africa. Insecticide was not expected to induce phytotoxicity, but would prevent weevil damage in water hyacinth plants; and weevil herbivory was predicted to reduce plant petiole length, and above/below surface biomass. Results showed that insecticide had no phytotoxic effects and excluded weevils for 3 weeks, providing a baseline for field applications. Biological control on the Nseleni River directly affected water hyacinth biomass and petiole length, but did not affect plant cover. Plants subject to weevil herbivory demonstrated reductions in above and below surface biomass and had shorter petioles compared to insect-free plants. Dead biomass was also higher in biological control treatments. Biological control strongly affects plant size, biomass and vigour; however, further integrated control is required to facilitate reduction in mat cover, which is the goalpost for successful control of floating aquatic plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ajuonu, O., V. Schade, B. Veltman, K. Sedjro & P. Neuenschwander, 2003. Impact of the weevils Neochetina eichhorniae and N. bruchi (Coleoptera: Curculionidae) on water hyacinth, Eichhornia crassipes (Pontederiaceae) in Benin, West Africa. African Entomology 1: 153–162.

    Google Scholar 

  • Albright, T. P., T. G. Moorhouse & T. J. McNabb, 2004. The rise and fall of water hyacinth in Lake Victoria and the Kagera River Basin, 1989–2001. Journal of Aquatic Plant Management 42: 72–84.

    Google Scholar 

  • Barrett, S. C. H. & I. W. Forno, 1982. Style morph distribution in new world populations of Eichhornia crassipes (mart.) Solms-Laubach (water hyacinth). Aquatic Botany 13: 299–306.

    Article  Google Scholar 

  • Byrne, M., M. P. Hill, M. Robertson, A. King, A. Jadhav, N. Katembo, J. Wilson, R. Brudvig & J. Fisher, 2010. Integrated Management of water hyacinth in South Africa: development of an integrated management plan for water hyacinth control, combining biological control, herbicidal control and nutrient control, tailored to the climatic regions of South Africa. Water Research Commission Report TT 454/10: 302.

  • Carson, W. P., S. M. Hovick, A. J. Baumert, D. E. Bunker & T. H. Pendergast, 2008. Evaluating the post-release efficacy of invasive plant biocontrol by insects: a comprehensive approach. Arthropod-Plant Interactions 2: 77–86.

    Article  Google Scholar 

  • Center, T. D., 1994. Biological control of weeds: Water hyacinth and water lettuce. In Rosen, D., F. D. Bennett & J. L. Capinera (eds), Pest Management in the Tropics, Biological Control – A Florida Perspective. UK, Intercept: 481–521.

    Google Scholar 

  • Center, T. D. & F. A. Dray Jr., 2010. Bottom–up control of water hyacinth weevil populations: do the plants regulate the insects? Journal of Applied Ecology 47: 329–337.

    Article  Google Scholar 

  • Center, T. D. & A. D. Wright, 1991. Age and phytochemical composition of water hyacinth (Pontederiaceae) leaves determine their acceptability to Neochetina eichhorniae (Coleoptera: Curculionidae). Environmental Entomology 20: 323–334.

    Article  CAS  Google Scholar 

  • Cilliers, C. J., 1991. Biological control of water hyacinth, Eichhornia crassipes (Pontederiaceae) in South Africa. Agriculture, Ecosystems and Environment 37: 207–217.

    Article  Google Scholar 

  • Cock, M., R. Day, H. Herren, M. P. Hill, M. H. Julien, P. Neuenschwander & J. Ogwang, 2000. Harvesters get that sinking feeling. Biocontrol News and Information 21: 1–8.

    Google Scholar 

  • Coetzee, J. A. & M. P. Hill, 2011. The role of eutrophication in the biological control of water hyacinth, Eichhornia crassipes, in South Africa. BioControl 57: 247–261.

    Article  Google Scholar 

  • Coetzee, J. A. & M. P. Hill, 2012. The role of eutrophication in the biological control of water hyacinth, Eichhornia crassippes, in South Africa. Biological Control 57: 247–261.

    Google Scholar 

  • Coetzee, J. A., R. W. Jones & M. P. Hill, 2014. Water hyacinth, Eichhornia crassipes (Pontederiaceae), reduces benthic macroinvertebrate diversity in a protected subtropical lake in South Africa. Biodiversity and Conservation 23: 1319–1330.

    Article  Google Scholar 

  • Cuda, J. P., R. Charudattan, M. J. Grodowitz, R. M. Newman, J. F. Shearer, M. L. Tamayo & B. Villegas, 2008. Recent advances in biological control of submersed aquatic weeds. Journal of Aquatic Plant Management 46: 15–32.

    Google Scholar 

  • Edwards, D. & C. J. Musil, 1975. Eichhornia crassipes in South Africa – a general review. Journal of the Limnological Society of Southern Africa 1: 23–27.

    Article  CAS  Google Scholar 

  • Ehler, L. E., 1976. The relationship between theory and practice in biological control. Bulletin of the Entomological Society of America 22: 319–321.

    Article  Google Scholar 

  • Getsinger, K. D., E. D. Dibble, J. H. Rodgers & D. F. Spencer, 2014. Benefits of Controlling Nuisance Aquatic Plants and Algae in the United States. Council on Agricultural Science and Technology, Ames: 12.

    Google Scholar 

  • Hajek, A. E., B. P. Hurley, M. Kenis, J. R. Garnas, S. J. Bush, M. J. Wingfield, J. C. van Lenteren & M. J. W. Cock, 2016. Exotic biological control agents: a solution or contribution to arthropod invasions. Biological Invasions 18: 953–969.

    Article  Google Scholar 

  • Heard, T. A. & S. L. Winterton, 2000. Interactions between nutrient status and weevil herbivory in the biological control of water hyacinth. Journal of Applied Ecology 37: 117–127.

    Article  Google Scholar 

  • Hill, J. M., 2014. Investigations of growth metrics and δ15 N values of water hyacinth (Eichhornia crassipes, (Mart.) Solms-Laub) in relation to biological control. Aquatic Botany 114: 12–20.

    Article  CAS  Google Scholar 

  • Hill, J. M., R. W. Jones, M. P. Hill & O. L. F. Weyl, 2015. Comparisons of isotopic niche widths of some invasive and indigenous fauna in a South African river. Freshwater Biology 60: 893–902.

    Article  Google Scholar 

  • Hill, M. P., 2003. Impact and Control of alien aquatic vegetation in South African aquatic ecosystems. African Journal of Aquatic Science 28: 19–24.

    Article  Google Scholar 

  • Hill, M. P. & C. J. Cilliers, 1999. A Review of the Arthropod Natural Enemies, and the Factors That Influence Their Efficacy, in the Biological Control of Water Hyacinth, Eichhornia crassipes (Mart.) Solms-Laubach (Pontederiaceae), in South Africa. In: Olckers, T. & M. P. Hill, (eds), Biological Control of Weeds in South Africa (1990–1998). African Entomology Memoirs 1: 103–112.

  • Hill, M. P. & J. A. Coetzee, 2008. Integrated control of water hyacinth in Africa. The Authors Journal compilation. OEPP/EPPO Bulletin 38(3): 452–457.

    Article  Google Scholar 

  • Hill, M. P. & J. Coetzee, 2017. The biological control of aquatic weeds in South Africa: current status and future challenges. Bothalia 47(2): a2152.

    Article  Google Scholar 

  • Hill, M. P. & T. Olckers, 2001. Biological control initiatives against water hyacinth in South Africa: constraining factors, success and new courses of action. In: Julien, M. H., M. P. Hill, T. D. Center & D. Jianqing (eds) Biological and integrated control of water hyacinth, Eichhornia crassipes. Proceedings of the 2nd Meeting of the Global Working Group for the Biological and Integrated Control of water hyacinth, Beijing, China, 9–12 October 2000. Australian Centre for International Agricultural Research, Canberra: 33–38.

  • Hill, M. P., J. A. Coetzee & C. Ueckermann, 2012. Toxic effect of herbicides used for water hyacinth control on two insects released for its biological control in South Africa. Biocontrol Science and Technology 22: 1321–1333.

    Article  Google Scholar 

  • Jacot Guillarmod, A., 1979. Water weeds in South Africa. Aquatic Botany 6: 377–391.

    Article  Google Scholar 

  • Jimenez, M. M., E. G. Lopez, R. H. Delgadillo & E. R. Franco, 2001. Importation, rearing, release and establishment of Neochetina bruchi (Coleoptera Curculionidae) for the biological control of water hyacinth in Mexico. Journal of Aquatic Plant Management 39: 140–143.

    Google Scholar 

  • Jones, R. W., 2001. Integrated control of water hyacinth on the Nseleni/Mposa Rivers and Lake Nsezi in KwaZulu-Natal, South Africa. In: Julien, M. H., M. P. Hill, T. D. Center & D. Jianqing (eds) Biological and Integrated Control of Water Hyacinth, Eichhornia crassipes. Proceedings of the 2nd Meeting of the Global Working Group for the Biological and Integrated Control of water hyacinth, Beijing, China, 9–12 October 2000. Australian Centre for International Agricultural Research, Canberra, Australia: 123–129.

  • Jones, R. W., 2009. The impact on biodiversity, and integrated control, of water hyacinth, Eichhornia crassipes (Martius) Solms-Laubach (Pontederiaceae) on the Lake Nsezi – Nseleni River System. MSc Thesis, Rhodes University: 1–116.

  • Jones, R. W., 2015. Aquatic Invasions of the Nseleni River System: Causes, Consequences and Control. PhD Thesis, Rhodes University: 1–179.

  • Jones, R. W., O. L. F. Weyl, E. R. Swartz & M. P. Hill, 2013. Using a unified invasion framework to characterize Africa’s first loricariid catfish invasion. Biological Invasions 15: 2139–2145.

    Article  Google Scholar 

  • Julien, M. H. & M. W. Griffiths, 1998. Biological control of weeds: a world catalogue of agents and their target weeds, 4th ed. CABI Publishing, Wallingford: 223.

    Google Scholar 

  • Lenth, R. V., 2013. lsmeans: least-squares means. R package version 1.10–01. http://CRAN.R-project.org/package=lsmeans.

  • May, B. & J. A. Coetzee, 2013. Comparisons of the thermal physiology of water hyacinth biological control agents: predicting establishment and distribution pre- and post-release. Entomologia Experimentalis et Applicata 147: 241–250.

    Article  Google Scholar 

  • Midgley, J. M., M. P. Hill & M. H. Villet, 2006. The effect of water hyacinth, Eichhornia crassipes (Martius) Solms-Laubach (Pontederiaceae), on benthic biodiversity in two impoundments on the New Year’s River, South Africa. African Journal of Aquatic Science 31: 25–30.

    Article  Google Scholar 

  • Morin, L., A. M. Reid, N. M. Sims-Chilton, Y. M. Buckley, K. Dhileepan, G. T. Hastwell, T. L. Nordblom & S. Raghu, 2009. Review of approaches to evaluate the effectiveness of weed biological control agents. Biological Control 51: 1–15.

    Article  Google Scholar 

  • Moran, P. J., 2006. Water nutrients, plant nutrients, and indicators of biological control on water at texas field sites. Journal of Aquatic Plant Management 44: 109–114.

    Google Scholar 

  • Müller-Schärer, H. & U. Schaffner, 2008. Classical biological control: exploiting enemy escape to manage plant invasions. Biological Invasions 10: 859–874.

    Article  Google Scholar 

  • Spencer, D. F. & G. G. Ksander, 2004. Do tissue carbon and nitrogen limit population growth of weevils introduced to control water hyacinth at a site in the Sacramento-San Joaquin Delta, California. Journal of Aquatic Plant Management 42: 45–48.

    Google Scholar 

  • Téllez, T. R., E.-M. de Rodrigo López, G. L. Granado, E. A. Pérez, R. M. López & J. M. S. Guzmán, 2008. The water hyacinth, Eichhornia crassipes: an invasive plant in the Guadiana River Basin (Spain). Aquatic Invasions 3: 42–53.

    Article  Google Scholar 

  • Thomas, M. B. & A. M. Reid, 2007. Are exotic natural enemies an effective way of controlling invasive plants? Trends in Ecology and Evolution 22: 447–453.

    Article  PubMed  Google Scholar 

  • Tipping, P. W. & T. D. Center, 2002. Evaluating acephate for insecticide exclusion of Oxyops vitiosa (Coleoptera: Curculionidae) from Melaleuca quinquenervia. Florida Entomologist 853: 458–463.

    Article  Google Scholar 

  • Tipping, P. W., M. R. Martin, P. D. Pratt, T. D. Center & M. B. Rayamajhi, 2008. Suppression of growth and reproduction of an exotic invasive tree by two introduced insects. Biological Control 44: 235–241.

    Article  Google Scholar 

  • Tipping, P. W., M. R. Martin, E. N. Pokorny, K. R. Nimmo, D. L. Fitzgerald, F. A. Dray Jr. & T. D. Center, 2014. Current levels of suppression of water hyacinth in Florida USA by classical biological control agents. Biological Control 71: 65–69.

    Article  Google Scholar 

  • Villamagna, A. M. & B. R. Murphy, 2010. Ecological and socio-economic impacts of invasive water hyacinth (Eichhornia crassipes): a review. Freshwater Biology 55: 282–298.

    Article  Google Scholar 

  • Williams, A. E., H. C. Duthie & R. E. Hecky, 2005. Water hyacinth in Lake Victoria: why did it vanish so quickly and will it return? Aquatic Botany 81: 300–314.

    Article  Google Scholar 

  • Wilson, J. R. U., O. Ajuonu, T. D. Center, M. P. Hill, M. H. Julien, F. F. Katagira, P. Neuenschwander, S. W. Njoka, J. Ogwang, R. H. Reeder & T. Van, 2007. The decline of water hyacinth on Lake Victoria was due to biological control by Neochetina spp. Aquatic Botany 87: 90–93.

    Article  Google Scholar 

  • Wright, A. D. & T. D. Center, 1984. Predicting population intensity of adult Neochetina eichhorniae (Coleoptera: Curculionidae) from incidence of feeding on leaves of water hyacinth Eichhornia crassipes. Environmental Entomology 13: 1478–1482.

    Article  Google Scholar 

  • Xie, Y., M. Wen & D. Yu, 2004. Growth and resource allocation of water hyacinth as affected by gradually increasing nutrient concentrations. Aquatic Botany 79: 257–266.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the Department of Environmental Affairs: National Resource Management Programme, Working for Water Programme and the South African Research Chairs Initiative of the Department of Science and Technology and the National Research Foundation of South Africa. Logistical assistance was provided by Ezemvelo KwaZulu-Natal Wildlife. Funding for this work was provided by the South African Research Chairs Initiative of the Department of Science and Technology and the National Research Foundation of South Africa. Any opinion, finding, conclusion or recommendation expressed in this material is that of the authors and the NRF does not accept any liability in this regard.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaclyn M. Hill.

Additional information

Handling editor: Andrew Dzialowski

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jones, R.W., Hill, J.M., Coetzee, J.A. et al. The contributions of biological control to reduced plant size and biomass of water hyacinth populations. Hydrobiologia 807, 377–388 (2018). https://doi.org/10.1007/s10750-017-3413-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-017-3413-y

Keywords

Navigation