Skip to main content

Advertisement

Log in

Chloroplast phylogeography of a widely distributed mangrove species, Excoecaria agallocha, in the Indo-West Pacific region

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Excoecaria agallocha is one of the predominant mangrove species in the Indo-West Pacific (IWP) region with an extensive range of distribution. To infer the current geographical patterns of genetic variation and provide new insights on the historical population dynamics of mangrove species in the IWP region, we sampled E. agallocha across its distribution range and investigated the phylogeography of this species using four chloroplast DNA (cpDNA) fragments. Our results showed that E. agallocha possessed a high degree of species-level genetic diversity, while the average genetic diversity within populations was much lower. The presence of population genetic structure was supported by the estimates of genetic differentiation and the analysis of molecular variance (AMOVA). Of the ten haplotypes identified, no haplotypes were shared between the East Indian Ocean (EIO), the West Pacific Ocean (WPO), and the North Australian (NA) regions. Genealogy analysis, haplotype distribution patterns, and the principal coordinate analysis (PCoA) consistently suggested the existence of three haplotype groups distributed in distinct geographical locations. The genealogical breaks observed and further analysis of geographic/genetic barriers indicated that both land barriers and oceanic currents may have played important roles in the divergence and demography of E. agallocha.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ayre, D. J. & S. Dufty, 1994. Evidence for restricted gene flow in the viviparous coral Seriatopora hystrix on Australia’s Great Barrier Reef. Evolution 48: 1183–1201.

    Article  PubMed  Google Scholar 

  • Bai, W. N., W. J. Liao & D. Y. Zhang, 2010. Nuclear and chloroplast DNA phylogeography reveal two refuge areas with asymmetrical gene flow in a temperate walnut tree from East Asia. New Phytologist 188: 892–901.

    Article  PubMed  Google Scholar 

  • Bandelt, H. J., P. Forster & A. Rohl, 1999. Median-joining networks for inferring intraspecific phylogenies. Molecular Biology and Evolution 16: 37–48.

    Article  CAS  PubMed  Google Scholar 

  • Cannon, C. H., R. J. Morley & A. B. Bush, 2009. The current refugial rainforests of Sundaland are unrepresentative of their biogeographic past and highly vulnerable to disturbance. Proceedings of National Academy of Sciences of the United States of America 106: 11188–11193.

    Article  CAS  Google Scholar 

  • Ceron-Souza, I., E. G. Gonzalez, A. E. Schwarzbach, D. E. Salas-Leiva, E. Rivera-Ocasio, N. Toro-Perea, E. Bermingham & W. O. McMillan, 2015. Contrasting demographic history and gene flow patterns of two mangrove species on either side of the Central American Isthmus. Ecology and Evolution 5: 3486–3499.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ceron-Souza, I., E. Bermingham, W. O. McMillan & F. A. Jones, 2012. Comparative genetic structure of two mangrove species in Caribbean and Pacific estuaries of Panama. BMC Evolutionary Biology 12: 205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan, K. M., 1970. The seasonal variation of hydrological properties in the northern South China Sea. In Marr, J. C. (ed.), The Kuroshio – A Symposium on the JAPAN Current. East-West Center Press, Honolulu: 143–162.

    Google Scholar 

  • Chen, Y., Y. Hou, Z. Guo, W. Wang, C. Zhong, R. Zhou & S. Shi, 2015. Applications of multiple nuclear genes to the molecular phylogeny, population genetics and hybrid identification in the mangrove genus Rhizophora. PLoS ONE 10: e0145058.

    Article  PubMed  PubMed Central  Google Scholar 

  • Das, A. B., S. Jena, C. Pradhan & P. K. Chand, 2011. Genetic variability among male populations of a minor mangrove Excoecaria agallocha L. as evident by chromosome morphology and DNA markers. Nucleus 54: 39–47.

    Article  Google Scholar 

  • Dasgupta, N., P. Nandy, C. Sengupta & S. Das, 2015. RAPD and ISSR marker mediated genetic polymorphism of two mangroves Bruguiera gymnorrhiza and Heritiera fomes from Indian Sundarbans in relation to their sustainability. Physiology and Molecular Biology of Plants 21: 375–384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dodd, R. S., Z. Afzal-Rafii, N. Kashani & J. Budrick, 2002. Land barriers and open oceans: effects on gene diversity and population structure in Avicennia germinans L. (Avicenniaceae). Molecular Ecology 11: 1327–1338.

    Article  CAS  PubMed  Google Scholar 

  • Doyle, J. J. & J. L. Doyle, 1990. A rapid total DNA preparation procedure for fresh plant tissue. Focus 12: 13–15.

    Google Scholar 

  • Duke, N. C., 1992. Tropical mangrove ecosystems. In Robertson, A. I. & D. M. Alongi (eds), Mangrove Floristics and Biogeography. Wiley, Washington DC, USA: 63–100.

    Google Scholar 

  • Duke, N. C., M. C. Ball & J. C. Ellison, 1998. Factors influencing biodiversity and distributional gradients in mangroves. Global Ecology and Biogeography Letters 7: 27–47.

    Article  Google Scholar 

  • Duke, N. C., 2013. World Mangrove ID: Expert Information at Your Fingertips. MangroveWatch Publications, Brisbane.

    Google Scholar 

  • Excoffier, L. & H. E. Lischer, 2010. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources 10: 564–567.

    Article  PubMed  Google Scholar 

  • Feng, X., Y. Zheng & X. Gong, 2016. Middle-upper pleistocene climate changes shaped the divergence and demography of Cycas guizhouensis (Cycadaceae): evidence from DNA sequences and microsatellite markers. Scientific Reports 6: 27368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flenley, J. R., 1998. Tropical forests under the climates of the last 30,000 years. Climatic Change 39: 177–197.

    Article  Google Scholar 

  • Fu, Y. X., 1997. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147: 915–925.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ge, X. J. & M. Sun, 1999. Reproductive biology and genetic diversity of a cryptoviviparous mangrove Aegiceras corniculatum (Myrsinaceae) using allozyme and inter simple sequence repeat (ISSR) analysis. Molecular Ecology 8: 2061–2069.

    Article  CAS  PubMed  Google Scholar 

  • Hamilton, M. B., 1999. Four primer pairs for the amplification of chloroplast intergenic regions with intraspecific variation. Molecular Ecology 8: 521–523.

    CAS  PubMed  Google Scholar 

  • Hamrick, J. L., M. J. W. Godt & S. L. Sherman-Broyles, 1992. Factors influencing levels of genetic diversity in woody plant species. New Forests 6: 95–124.

    Article  Google Scholar 

  • Harpending, H., 1994. Signature of ancient population growth in a low-resolution mitochondrial DNA mismatch distribution. Human Biology 66: 591–600.

    CAS  PubMed  Google Scholar 

  • Hewitt, G., 2000. The genetic legacy of the Quaternary ice ages. Nature 405: 907–913.

    Article  CAS  PubMed  Google Scholar 

  • Hu, J. Y. & M. S. Liu, 1992. The current structure during summer in southern Taiwan Strait. Journal of Tropical Oceanography 11: 42–47.

    Google Scholar 

  • Huang, Y. L., F. X. Tan, G. H. Su, S. L. Deng, H. H. He & S. H. Shi, 2008. Population genetic structure of three tree species in the mangrove genus Ceriops (Rhizophoraceae) from the Indo West Pacific. Genetica 133: 47–56.

    Article  PubMed  Google Scholar 

  • Hudson, R. R., 1990. Gene genealogies and the coalescent process. In Futuyma, D. & J. Antonovics (eds), Oxford Surveys in Evolutionary Biology. Oxford University Press, Oxford: 1–44.

    Google Scholar 

  • Inomata, N., X. R. Wang, S. Changtragoon & A. E. Szmidt, 2009. Levels and patterns of DNA variation in two sympatric mangrove species, Rhizophora apiculata and R. mucronata from Thailand. Genes Genetic Systems 84: 277–286.

    Article  CAS  PubMed  Google Scholar 

  • Jennings, J. N., 1972. Some attributes of Torres Strait. In Walker, D. (ed.), Bridge and barrier: the natural and cultural history of the Torres Strait. Australian National University of Canberra, Canberra: 29–38.

    Google Scholar 

  • Jian, S. G., T. Tang, Y. Zhong & S. H. Shi, 2004. Variation in inter-simple sequence repeat (ISSR) in mangrove and non-mangrove populations of Heritiera littoralis (Sterculiaceae) from China and Australia. Aquatic Botany 79: 75–86.

    Article  Google Scholar 

  • Kennedy, J. P., M. W. Pil, C. E. Proffitt, W. A. Boeger, A. M. Stanford & D. J. Devlin, 2016. Postglacial expansion pathways of red mangrove, Rhizophora mangle, in the Caribbean Basin and Florida. American Journal of Botany 103: 260–276.

    Article  PubMed  Google Scholar 

  • Kimura, M. & G. H. Weiss, 1964. The stepping stone model of population structure and the decrease of genetic correlation with distance. Genetics 49: 561–576.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lakshmi, M., M. Parani, N. Ram & A. Parida, 2000. Molecular phylogeny of mangroves VI. Intraspecific genetic variation in mangrove species Excoecaria agallocha L. (Euphorbiaceae). Genome 43: 110–115.

    Article  CAS  PubMed  Google Scholar 

  • Liao, P. C., S. Havanond & S. Huang, 2007. Phylogeography of Ceriops tagal (Rhizophoraceae) in Southeast Asia: the land barrier of the Malay Peninsula has caused population differentiation between the Indian Ocean and South China Sea. Conservation Genetics 8: 89–98.

    Article  CAS  Google Scholar 

  • Librado, P. & J. Rozas, 2009. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25: 1451–1452.

    Article  CAS  PubMed  Google Scholar 

  • Maguire, T. L., P. Saenger, P. R. Baverstock & R. J. Henry, 2000. Microsatellite analysis of genetic structure in the mangrove species Avicennia marina (Forsk.) Vierh. (Avicenniaceae). Molecular Ecology 9: 1853–1862.

    Article  CAS  PubMed  Google Scholar 

  • Manni, F., E. Guerard & E. Heyer, 2004. Geographic patterns of (genetic, morphologic, linguistic) variation: how barriers can be detected by using Monmonier’s algorithm. Human Biology 76: 173–190.

    Article  PubMed  Google Scholar 

  • Meirmans, P. G., 2012. The trouble with isolation by distance. Molecular Ecology 21: 2839–2846.

    Article  PubMed  Google Scholar 

  • Mori, G. M., M. I. Zucchi & A. P. Souza, 2015. Multiple-geographic-scale genetic structure of two mangrove tree species: the roles of mating system, hybridization, limited dispersal and extrinsic factors. PLoS ONE 10: e0118710.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nettel, A. & R. S. Dodd, 2007. Drifting propagules and receding swamps: genetic footprints of mangrove recolonization and dispersal along tropical coasts. Evolution 61: 958–971.

    Article  CAS  PubMed  Google Scholar 

  • Ngeve, M. N., V. S. Tom, D. Menemenlis, N. Koedam & L. Triest, 2016. Contrasting effects of historical sea level rise and contemporary ocean currents on regional gene flow of Rhizophora racemosa in Eastern Atlantic mangroves. PLoS ONE 11: e0150950.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nitani, H., 1972. Beginning of the Kuroshi. In Stommel, H. & K. Yoshida (eds), Kuroshio: Its Physical Aspects. University of Tokyo Press, Tokyo, Japan: 129–163.

    Google Scholar 

  • Parks, D. H., M. Porter, S. Churcher, S. Wang, C. Blouin, J. Whalley, S. Brooks & R. G. Beiko, 2009. GenGIS: a geospatial information system for genomic data. Genome Research 19: 1896–1904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peakall, R. & P. E. Smouse, 2012. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28: 2537–2539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petit, R. J., J. Duminil, S. Fineschi, A. Hampe, D. Salvini & G. G. Vendramin, 2005. Comparative organization of chloroplast, mitochondrial and nuclear diversity in plant populations. Molecular Ecology 14: 689–701.

    Article  CAS  PubMed  Google Scholar 

  • Pons, O. & R. J. Petit, 1996. Measuring and testing genetic differentiation with ordered versus unordered alleles. Genetics 144: 1237–1245.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rousset, F., 1997. Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145: 1219–1228.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ruan, Y., B. Huang, S. Lai, Y. Wan, J. Li, S. Huang & P. Liao, 2013. Population genetic structure, local adaptation, and conservation genetics of Kandelia obovata. Tree Genetics & Genomes 9: 913–925.

    Article  Google Scholar 

  • Saenger, P., 1998. Mangrove vegetation: an evolutionary perspective. Marine and Freshwater Research 49: 277–286.

    Article  CAS  Google Scholar 

  • Saenger, P. & M. F. Bellan, 1995. The Mangrove Vegetation of the Atlantic Coast of Africa: A Review. Universite de Toulouse Press, Toulouse, France.

    Google Scholar 

  • Saintilan, N., N. C. Wilson, K. Rogers, A. Rajkaran & K. W. Krauss, 2014. Mangrove expansion and salt marsh decline at mangrove poleward limits. Global Change Biology 20: 147–157.

    Article  PubMed  Google Scholar 

  • Shaw, J., E. B. Lickey, J. T. Beck, S. B. Farmer, W. Liu, J. Miller, K. C. Siripun, C. T. Winder, E. E. Schilling & R. L. Small, 2005. The tortoise and the hare II: relative utility of 21 noncoding chloroplast DNA sequences for phylogenetic analysis. American Journal of Botany 92: 142–166.

    Article  CAS  PubMed  Google Scholar 

  • Slatkin, M., 1987. Gene flow and the geographic structure of natural populations. Science 236: 787–792.

    Article  CAS  PubMed  Google Scholar 

  • Small, R. L., J. A. Ryburn, R. C. Cronn, T. Seelanan & J. F. Wendel, 1998. The tortoise and the hare: choosing between noncoding plastome and nuclear Adh sequences for phylogeny reconstruction in a recently diverged plant group. American Journal of Botany 85: 1301–1315.

    Article  CAS  PubMed  Google Scholar 

  • Su, G. H., Y. L. Huang, F. X. Tan, X. W. Ni, T. Tang & S. H. Shi, 2006. Genetic variation in Lumnitzera racemosa, a mangrove species from the Indo-West Pacific. Aquatic Botany 84: 341–346.

    Article  CAS  Google Scholar 

  • Su, G. H., Y. L. Huang, F. X. Tan, X. W. Ni, T. Tang & S. H. Shi, 2007. Conservation genetics of Lumnitzera littorea (Combretaceae), an endangered mangrove, from the Indo-West Pacific. Marine Biology 150: 321–328.

    Article  Google Scholar 

  • Su, J. L. & W. Wang, 1987. On the sources of the Taiwan warm current from the South China Sea. Chinese Journal of Oceanology Limnology 5: 299–308.

    Article  Google Scholar 

  • Sun, M., K. C. Wong & J. S. Y. Lee, 1998. Reproductive biology and population genetic structure of Kandelia candel (Rhizophoraceae), a viviparous mangrove species. American Journal of Botany 85: 1631–1637.

    Article  CAS  PubMed  Google Scholar 

  • Taberlet, P., L. Fumagalli, A. G. Wust-Saucy & J. F. Cosson, 1998. Comparative phylogeography and postglacial colonization routes in Europe. Molecular Ecology 7: 453–464.

    Article  CAS  PubMed  Google Scholar 

  • Tajima, F., 1989. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123: 585–595.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tan, F. X., Y. L. Huang, X. J. Ge, G. H. Su, X. W. Ni & S. H. Shi, 2005. Population genetic structure and conservation implications of Ceriops decandra in Malay Peninsula and North Australia. Aquatic Botany 81: 175–188.

    Article  Google Scholar 

  • Tomlinson, P. B., 1986. The Botany of Mangroves. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Triest, L., 2008. Molecular ecology and biogeography of mangrove trees towards conceptual insights on gene flow and barriers: a review. Aquatic Botany 89: 138–154.

    Article  CAS  Google Scholar 

  • Urashi, C., K. M. Teshima, S. Minobe, O. Koizumi & N. Inomata, 2013. Inferences of evolutionary history of a widely distributed mangrove species, Bruguiera gymnorrhiza, in the Indo-West Pacific region. Ecology and Evolution 3: 2251–2261.

    Article  PubMed  PubMed Central  Google Scholar 

  • Voris, H. K., 2000. Maps of Pleistocene sea levels in Southeast Asia: shorelines, river systems and time durations. Journal of Biogeography 27: 1153–1167.

    Article  Google Scholar 

  • Waters, J. M., 2008. Marine biogeographical disjunction in temperate Australia: historical landbridge, contemporary currents, or both? Diversity and Distributions 14: 692–700.

    Article  Google Scholar 

  • Wee, A. K. S., K. Takayama, T. Asakawa, B. Thompson, S. Onrizal, N. X. Sungkaew, M. Tung, K. K. Nazre, H. T. W. Soe, Y. Tan, S. Watano, T. Kajita Baba & E. Webb, 2014. Oceanic currents, not land masses, maintain the genetic structure of the mangrove Rhizophora mucronata Lam. (Rhizophoraceae) in Southeast Asia. Journal of Biogeography 41: 954–964.

    Article  Google Scholar 

  • Wiley, E. O., 1988. Vicariance biogeography. Annual Review of Ecology Evolution and Systematics 19: 513–542.

    Article  Google Scholar 

  • Williamson, G. R., 1970. The hydrography and weather of the Hong Kong fishing ground. Hong Kong Fisheries Bulletin 1: 43–49.

    Google Scholar 

  • Woodruff, D. S., 2010. Biogeography and conservation in Southeast Asia: how 2.7 million years of repeated en environmental fluctuations affect today’s patterns and the future of the remaining refugial-phase biodiversity. Biodiversity and Conservation 19: 919–941.

    Article  Google Scholar 

  • Ye, C., Z. Lin, G. Li, Y. Wang, J. Qiu, F. Fu, H. Zhang, L. Chen, S. Ye, W. Song, G. Jin, J. Zhu, Y. Lu, L. Guo & L. Fan, 2014. Echinochloa chloroplast genomes: insights into the evolution and taxonomic identification of two weedy species. PLoS ONE 9: e113657.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang, Z. H., R. C. Zhou, T. Tang, Y. L. Huang, Y. Zhong & S. H. Shi, 2008. Genetic variation in central and peripheral populations of Excoecaria agallocha from Indo-West Pacific. Aquatic Botany 89: 57–62.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study is supported by grants from the National Natural Science Foundation of China (Grant No.41776166 and 31700178), the Natural Science Foundation of Guangdong Province (Grant No. 2015A030313136 and 2017A030313159), National Key Research and Development Program of China (Grant No. 2017FY100705), Science and Technology Program of Guangzhou (Grant No. 201707020035), and Chang Hungta Science Foundation of Sun Yat-sen University. The authors wish to thank Dr. Sirajul Haque, Dr. Kalimuddin Bhuiyan, and Dr. Mosharraf Hossen (Institute of Forestry and Environmental Sciences, Chittagong University, Chittagong, Bangladesh); Dr. Sonjai Havanond (Department of National Parks, Wildlife and Plant Conservation, Bangkok, Thailand); Mr. Chanop Jaengjai (Department of Marine and Coastal Resources, Phetchaburi, Thailand); Ms. Jayasri Lakshminarayanan and Mr. Koh Kwan Siong (National Biodiversity Centre, Singapore); Dr. Yubin Yan (the University of Hong Kong, Hong Kong, China); and Dr. Xinnian Li, Dr. Ying Liu, Dr. Suhua Shi, and Dr. Zihong Zhang (Sun Yat-sen University, China) for their assistance in collecting and providing plant material.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yelin Huang.

Additional information

Handling editor: Ken Krauss

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, W., Ng, W.L., Wu, H. et al. Chloroplast phylogeography of a widely distributed mangrove species, Excoecaria agallocha, in the Indo-West Pacific region. Hydrobiologia 807, 333–347 (2018). https://doi.org/10.1007/s10750-017-3409-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-017-3409-7

Keywords

Navigation