eDNA-based crayfish plague monitoring is superior to conventional trap-based assessments in year-round detection probability

Abstract

The crayfish plague disease agent Aphanomyces astaci is a major threat to European crayfish populations, leading to mass extinctions when spores are transmitted into habitats of native species by infected invasive crayfish species. Current methods for detecting crayfish plague in carrier crayfish populations depend on time-consuming capture of individuals and screening via molecular methods. Highly sensitive environmental DNA (eDNA) methods are a promising tool for rapid and cost-efficient monitoring of pathogens in freshwater systems directly in water samples. For evaluating the usefulness of eDNA for A. astaci detection, the trap-based crayfish plague monitoring followed by qPCR screening of tissue samples was compared to an eDNA-based system to detect A. astaci- spores at a stream inhabited by an infected carrier crayfish population of Pacifastacus leniusculus. The presence of A. astaci was confirmed at all investigated sites with both sample types. Both methods showed comparable A. astaci prevalence, with the eDNA method being applicable across a longer annual time span, including winter, with greater reliability than the conventional method. Given the speed and reliability of the eDNA method for crayfish plague detection, this method might be the best choice for routine monitoring and evaluation of crayfish habitats to hinder the disease spread.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Abrahamsson, S. A. A., 1971. Density, growth and reproduction in populations of Astacus astacus and Pacifastacus leniusculus in an isolated pond. Oikos 22: 373–380.

    Article  Google Scholar 

  2. Abrahamsson, S. A. A., 1981. Trappability, locomotion and diel pattern of activity of the crayfish Astacus astacus and Pacifastacus leniusculus Dana. Freshwater Crayfish 5: 239–253.

    Google Scholar 

  3. Aiken, D. E. & S. L. Waddy, 1992. The growth process in crayfish. Reviews in Aquatic Science 6: 335–381.

    Google Scholar 

  4. Alderman, D. J., 1996. Geographical spread of bacterial and fungal diseases of crustaceans. Revue scientifique et technique (OIE) 15: 603–632.

    CAS  Article  Google Scholar 

  5. Alderman, D. J. & J. L. Polglase, 1986. Aphanomyces astaci: isolation and culture. Journal of Fish Diseases 9: 367–379.

    Article  Google Scholar 

  6. Alderman, D. J. & J. L. Polglase, 1988. Pathogens, parasites and commensals. In Holdich, D. M. & R. S. Lowery (eds), Freshwater Crayfish. Biology, Management and Exploitation. Croom Helm, London: 167–212.

    Google Scholar 

  7. Barnes, M. A. & C. R. Turner, 2016. The ecology of environmental DNA and implications for conservation genetics. Conservation Genetics 17: 1–17.

    CAS  Article  Google Scholar 

  8. Beakes, G. W., D. Honda & M. Thines, 2014. Systematics of the Straminipila: Labyrinthulomycota, Hyphochytriomycota, and Oomycota. In McLaughlin, D. & J. W. Spatafora (eds), The Mycota. Systematics and Evolution, Part B. Springer, Berlin: 39–97.

    Google Scholar 

  9. Diéguez-Uribeondo, J., T. S. Huang, L. Cerenius & K. Söderhäll, 1995. Physiological adaptation of an Aphanomyces astaci strain isolated from the freshwater crayfish Procambarus clarkii. Mycological Research 99: 574–578.

    Article  Google Scholar 

  10. Diéguez-Uribeondo, J., L. Cerenius & I. Dyková, 2006. Pathogens, parasites and ectocommensals. In Souty-Grosset, C., D. M. Holdich, P. Y. Noël, J. D. Reynolds & P. Haffner (eds), Atlas of crayfish in Europe. Muséum National d’Histoire Naturelle, Paris: 131–148.

    Google Scholar 

  11. Evans, L. H. & B. F. Edgerton, 2002. Pathogens, parasites and commensals. In Holdich, D. M. (ed.), Biology of Freshwater Crayfish. Blackwell Science Ltd, Oxford: 377–438.

    Google Scholar 

  12. Flint, R. W., 1977. Seasonal activity, migration and distribution of the Crayfish, Pacifastacus Ieniusculus, in Lake Tahoe. The American Midland Naturalist 97: 280–292.

    Article  Google Scholar 

  13. Gherardi, F., 2002. Behaviour. In Holdich, D. M. (ed.), Biology of Freshwater Crayfish. Blackwell Science Ltd, Oxford: 257–290.

    Google Scholar 

  14. Goldberg, C. S., D. S. Pilliod, R. S. Arkle & L. P. Waits, 2011. Molecular detection of vertebrates in stream water: a demonstration using rocky mountain tailed Frogs and idaho giant salamanders. PLoS ONE 6: e22746.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. Goldberg, C. S., C. R. Turner, K. Deiner, K. E. Klymus, P. F. Thomsen, M. A. Murphy, S. F. Spear, A. McKee, S. J. Oyler-McCance, R. S. Cornman, M. B. Laramie, A. R. Mahon, R. F. Lance, D. S. Pilliod, K. M. Strickler, L. P. Waits, A. K. Fremier, T. Takahara, J. E. Herder, P. Taberlet & M. Gilbert, 2016. Critical considerations for the application of environmental DNA methods to detect aquatic species. Methods in Ecology and Evolution 7: 1299–1307.

    Article  Google Scholar 

  16. Guan, R. Z. & P. R. Wiles, 1999. Growth and reproduction of the introduced crayfish Pacifastacus leniusculus in a British lowland river. Fisheries Research 42: 245–259.

    Article  Google Scholar 

  17. Holdich, D. M., J. D. Reynolds, C. Souty-Grosset, C. Souty-Grosset & P. J. Sibley, 2009. A review of the ever increasing threat to European crayfish from non-indigenous crayfish species. Knowledge and management of aquatic ecosystems 394–395: 11.

    Article  Google Scholar 

  18. Jerde, C. L., A. R. Mahon, W. L. Chadderton & D. M. Lodge, 2011. “Sight-unseen” detection of rare aquatic species using environmental DNA. Conservation Letters 4: 150–157.

    Article  Google Scholar 

  19. Jussila, J., J. Makkonen, A. Vainikka, R. Kortet & H. Kokko, 2011. Latent crayfish plague (Aphanomyces astaci) infection in a robust wild noble crayfish (Astacus astacus) population. Aquaculture 321: 17–20.

    Article  Google Scholar 

  20. Kozák, P., M. Buřič, J. Kanta, A. Kouba, P. Hamr & T. Policar, 2009. The effect of water temperature on the number of moults and growth of juvenile signal crayfish Pacifastacus leniusculus Dana. Czech Journal of Animal Science 54: 286–292.

    Google Scholar 

  21. Kozubíková, E., L. Filipová, P. Kozák, Z. Ďuriš, M. P. Martín, J. Diéguez-Uribeondo, B. Oidtmann & A. Petrusek, 2009. Prevalence of the crayfish plague pathogen Aphanomyces astaci in invasive American crayfishes in the Czech Republic. Conservation Biology 23: 1204–1213.

    Article  PubMed  Google Scholar 

  22. Kusar, D., A. Vrezec, M. Ocepek & V. Jencic, 2013. Aphanomyces astaci in wild crayfish populations in Slovenia: first report of persistent infection in a stone crayfish Austropotamobius torrentium population. Diseases of Aquatic Organisms 103: 157–169.

    CAS  Article  PubMed  Google Scholar 

  23. Lowery, R. S., 1988. Growth, moulting and reproduction. In Holdich, D. M. & R. S. Lowery (eds), Freshwater Crayfish. Biology, Management and Exploitation. Croom Helm, London: 83–113.

    Google Scholar 

  24. Lowery, R. S. & D. M. Holdich, 1988. Pacifastacus leniusculus in North America and Europe, with details of the distribution of introduced and native crayfish species in Europe. In Holdich, D. M. & R. S. Lowery (eds), Freshwater crayfish. Biology, management and exploitation. Croom Helm, London: 283–308.

    Google Scholar 

  25. Makkonen, J., J. Jussila, R. Kortet, A. Vainikka & H. Kokko, 2012. Differing virulence of Aphanomyces astaci isolates and elevated resistance of noble crayfish Astacus astacus against crayfish plague. Diseases of Aquatic Organisms 102: 129–136.

    CAS  Article  PubMed  Google Scholar 

  26. Makkonen, J., D. A. Strand, H. Kokko, T. Vrålstad & J. Jussila, 2013. Timing and quantifying Aphanomyces astaci sporulation from the noble crayfish suffering from the crayfish plague. Veterinary Microbiology 162: 750–755.

    CAS  Article  PubMed  Google Scholar 

  27. Makkonen, J., H. Kokko, A. Vainikka, R. Kortet & J. Jussila, 2014. Dose-dependent mortality of the noble crayfish (Astacus astacus) to different strains of the crayfish plague (Aphanomyces astaci). Journal of Invertebrate Pathology 115: 86–91.

    CAS  Article  PubMed  Google Scholar 

  28. Mason, J. C., 1970. Copulatory behavior of the crayfish Pacifastacus trowbridgii (Stimpson). Canadian Journal of Fisheries and Aquatic Sciences 48: 969–976.

    Google Scholar 

  29. Nyhlén, L. & T. Unestam, 1980. Wound reactions and Aphanomyces astaci growth in crayfish cuticle. Journal of Invertebrate Pathology 36: 187–197.

    Article  Google Scholar 

  30. Nyland, V. & K. Westman, 1995. Frequency of visible symptoms of crayfish plague fungus Aphanomyces astaci on the signal crayfish Pacifastacus leniusculus in natural populations in Finland 1979-1988. Freshwater Crayfish 8: 577–588.

    Google Scholar 

  31. Office international des e’pizooties (OIE), 2012. In Crayfish plague (Aphanomyces astaci), Chapter 2.2.1. Manual of Diagnostic Tests for Aquatic Animals. World Organization for Animal Health. http://www.oie.int/index.php?id=2439&L=0&htmfile=chapitre_aphanomyces_astaci.htm. Accessed 5 Feb 2017.

  32. Pârvulescu, L., A. Schrimpf, E. Kozubíková, S. Cabanillas Resino, T. Vrålstad, A. Petrusek & R. Schulz, 2012. Invasive crayfish and crayfish plague on the move: first detection of the plague agent Aphanomyces astaci in the Romanian Danube. Diseases of Aquatic Organisms 98: 85–94.

    Article  PubMed  Google Scholar 

  33. Reynolds, J. D. & M. A. Matthews, 1993. Experimental fishing of Austropotamobius pallipes (Lereboullet) stocks in an Irish midland lake. Freshwater Crayfish 9: 147–153.

    Google Scholar 

  34. Smart, A. S., R. Tingley, A. R. Weeks, A. R. van Rooyen & M. A. McCarthy, 2015. Environmental DNA sampling is more sensitive than a traditional survey technique for detecting an aquatic invader. Ecological Applications 25: 1944–1952.

    Article  PubMed  Google Scholar 

  35. Strand, D. A., J. Jussila, S. I. Johnsen, S. Viljamaa-Dirks, L. Edsman, J. Wiik-Nielsen, H. Viljugrein, F. Engdahl, T. Vrålstad & E. Morgan, 2014. Detection of crayfish plague spores in large freshwater systems. Journal of Applied Ecology 51: 544–553.

    Article  Google Scholar 

  36. Strand, D. A., A. Holst-Jensen, H. Viljugrein, B. Edvardsen, D. Klaveness, J. Jussila & T. Vrålstad, 2011. Detection and quantification of the crayfish plague agent in natural waters: direct monitoring approach for aquatic environments. Diseases of Aquatic Organisms 95: 9–17.

    Article  PubMed  Google Scholar 

  37. Strand, D. A., J. Jussila, S. Viljamaa-Dirks, H. Kokko, J. Makkonen, A. Holst-Jensen, H. Viljugrein & T. Vrålstad, 2012. Monitoring the spore dynamics of Aphanomyces astaci in the ambient water of latent carrier crayfish. Veterinary Microbiology 160: 99–107.

    Article  PubMed  Google Scholar 

  38. Svoboda, J., E. Kozubikova-Balcarova, A. Kouba, M. Buric, P. Kozak, J. Diéguez-Uribeondo & A. Petrusek, 2013. Temporal dynamics of spore release of the crayfish plague pathogen from its natural host, American spiny-cheek crayfish (Orconectes limosus), evaluated by transmission experiments. Parasitology 140: 792–801.

    CAS  Article  PubMed  Google Scholar 

  39. Takahara, T., T. Minamoto, H. Yamanaka, H. Doi, Z. Kawabata & J. A. Gilbert, 2012. Estimation of fish biomass using environmental DNA. PLoS ONE 7: e35868.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. Thomsen, P. F. & E. Willerslev, 2015. Environmental DNA – an emerging tool in conservation for monitoring past and present biodiversity. Biological Conservation 183: 4–18.

    Article  Google Scholar 

  41. Thomsen, P. F., J. Kielgast, L. L. Iversen, P. R. Moller, M. Rasmussen & E. Willerslev, 2012. Detection of a diverse marine fish fauna using environmental DNA from seawater samples. PLoS ONE 7: e41732.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. Tuffs, S. & B. Oidtmann, 2011. A comparative study of molecular diagnostic methods designed to detect the crayfish plague pathogen, Aphanomyces astaci. Veterinary Microbiology 153: 343–353.

    CAS  Article  PubMed  Google Scholar 

  43. Unestam, T., 1972. On the host range and origin of the crayfish plague fungus. Reports of the Institute of Freshwater Research, Drottningholm 52: 192–198.

    Google Scholar 

  44. Unestam, T. & D. W. Weiss, 1970. The host-parasite relationship between freshwater crayfish and the crayfish disease fungus Aphanomyces astaci: responses to infection by a susceptible and a resistant species. Journal of General Microbiology 69: 77–90.

    Article  Google Scholar 

  45. Viljamaa-Dirks, S., S. Heinikainen, M. Nieminen, P. Vennerstrom & S. Pelkonen, 2011. Persistent infection by crayfish plague Aphanomyces astaci in a noble crayfish population – a case report. Bulletin of the European Association of Fish Pathologists 31: 182–188.

    Google Scholar 

  46. Viljamaa-Dirks, S., S. Heinikainen, H. Torssonen, M. Pursiainen, J. Mattila & S. Pelkonen, 2013. Distribution and epidemiology of genotypes of the crayfish plague agent Aphanomyces astaci from noble crayfish Astacus astacus in Finland. Diseases of Aquatic Organisms 103: 199–208.

    CAS  Article  PubMed  Google Scholar 

  47. Viljamaa-Dirks, S., S. Heinikainen, A. M. K. Virtala, H. Torssonen & S. Pelkonen, 2016. Variation in the hyphal growth rate and the virulence of two genotypes of the crayfish plague organism Aphanomyces astaci. Journal of Fish Diseases 39: 753–764.

    CAS  Article  PubMed  Google Scholar 

  48. Vrålstad, T., A. K. Knutsen, T. Tengs & A. Holst-Jensen, 2009. A quantitative TaqMan® MGB real-time polymerase chain reaction based assay for detection of the causative agent of crayfish plague Aphanomyces astaci. Veterinary Microbiology 137: 146–155.

    Article  PubMed  Google Scholar 

  49. Westman, K. & R. Savolainen, 2002. Growth of the signal crayfish, Pacifastacus leniusculus, in a small forest lake in Finland. Boreal Environment Research 7: 53–61.

    Google Scholar 

  50. Woodlock, B. & J. D. Reynolds, 1988. Laboratory breeding studies of freshwater crayfish, Austropotamobius pallipes (Lereboullet). Freshwater Biology 19: 71–78.

    Article  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the upper fisheries administrations of the State of Hessen for financial and logistical support, namely Dr. Christian Köhler and Patrick Heinz (regional authority Darmstadt), Guntram Ohm-Winter and Marlene Höfner (regional authority Gießen) and Christoph Laczny (regional authority Kassel). We are also thankful to Dr. Anne Schrimpf who provided technical support that greatly assisted the research in the initial stages. We thank Berardino Cocchiararo for his valuable assistance in qPCR data analysis and his helpful advices in laboratory practice during this project. We would like to thank Philippa Breyer, Silvia Mort-Farre and Julia Mann for their assistance in sampling and laboratory work and are thankful to Rainer Hennings for useful suggestions concerning crayfish trapping. We are also very grateful to the two unknown reviewers for their comments, which improved the manuscript.

Funding

This work was funded (Grant F7/2012) and fishing permits were granted by the State of Hessen, represented by the regional authorities Darmstadt, Gießen and Kassel. The contributions conducted by D. Strand and T. Vrålstad were funded by the Norwegian Research Council Project NRC-243907/TARGET.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Claudia Wittwer.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Handling editor: Eric Larson

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 155 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wittwer, C., Stoll, S., Strand, D. et al. eDNA-based crayfish plague monitoring is superior to conventional trap-based assessments in year-round detection probability. Hydrobiologia 807, 87–97 (2018). https://doi.org/10.1007/s10750-017-3408-8

Download citation

Keywords

  • Aphanomyces astaci
  • Environmental DNA
  • Filtration
  • Pacifastacus leniusculus
  • Pathogen detection
  • Seasonal variation